إعـــــــلان

تقليص
لا يوجد إعلان حتى الآن.

حل واجب m132 استاذ 0544321455 -00966544321455 ايميل [email protected]

تقليص
X
 
  • تصفية - فلترة
  • الوقت
  • عرض
إلغاء تحديد الكل
مشاركات جديدة

  • [معروض] حل واجب m132 استاذ 0544321455 -00966544321455 ايميل [email protected]

    حل واجب m132 مدرس
    O544321455 - OO966544321455
    ايميل [email protected]
    سكايب a_al_shora
    واتس اب OO966544321455

    M132: LINEAR ALGEBRA
    Tutor Marked Assignment


    Cut-Off Date: Week of November 30th, 2013 Total Marks: 40


    Q−1:[5×2 marks]
    Answer each of the following as True or False (justify your answer):


    a) If m1 ≠m2 in the system , where m1 , m2 , b1 , and b2 are constants, then the system has a unique solution.






    b) If (c1 , c2) is a solution of the 2 x 2 system , then, for any real number k, the ordered pair (kc1 , kc2) is a solution.








    c) If AB = 0, thenA = B = 0.






    d) The vectors are linearly independent.






    e) The vectors form a linear combination with .
    Q−2: [1+3+2 marks]For the system:
    a) Write the coefficient matrix A of the system
    b) Find det(A)
    c) Compute |-2A.AT.A-1|
















    Q−3:[1+4 marks]Consider the linear system:


    a) Write the augmented matrix for the system.
    b) Solve the system by applying the Gaussian elimination method.




















    Q¬−4:[2+2+2 marks]Let
    a) FindC(AT +2B)
    b) Find BA - CD.
    c) FindD2 -2C.






















    Q¬−5:[1 + 2 + 2 marks]. Consider the linear system: .
    a) Write the linear system in matrix form .
    b) Find a matrix C such that .
    c) Find the matrix B such that .
























    Q−6:[2+1+1 marks]Consider a linear system whose augmented matrix is of the form:
    . For what values of a and b will the system have:
    a) No Solution; b) A unique solution; c) Infinitely many solutions.
















    Q¬−7:[2+2+1 marks]Let A= .
    a) Find a matrix B that is row equivalent to A.
    b) Determine whether the fourth column vector forms a linear combination with the first three column vectors.
    c) Show that the first three column vectors are linearly independent. Explain.
    حل واجب m132 مدرس
    O544321455 - OO966544321455
    ايميل [email protected]
    سكايب a_al_shora
    واتس اب OO966544321455
يعمل...
X