SULTAN QABOOS UNIVERSITY DEPARTMENT OF MATHEMATICS AND STATISTICS 9 October 2007

MATH 2107 CALCULUS I

TEST I VERSION II

(Time allowed: 60 minutes)

N	A	Ν	1	E	:	
N	A	Ν	1	E	:	_

ID#: Section:

Instructions:

- This test contains 6 pages (3 sheets back to back) and 12 questions. The empty extra sheet is for rough work and will not be marked.
- Write your name, ID number and Section number in the first page and ID number at the top of each sheet.
- Attempt all questions, writing your answer in the space below the statement of the question. For questions 1-6 show all your work.
- For Multiple Choice questions, CIRCLE the correct answer.
- Please do NOT SEPARATE the pages of this booklet.

DO NOT WRITE ON THIS BOX!

Problem	points	score	
1	4 pts		
2	5 pts		
3	4 pts		
4	7 pts		
5	4 pts		
6	4 pts		
7-12	12 pts		
TOTAL	40 pts		

– 2 – MATH2107 CALCULUS I

1. (4 points) Find $\lim_{x \to 1^+} \sqrt{\frac{x^3 - x}{x^4 - 1}}$

2. Let
$$f(x) = \begin{cases} 2x+8, & x \le 1\\ 3x+7, & x > 1. \end{cases}$$

(a) (2 points) Show that f is continuous.

(b) (3 points) Show that f is not differentiable at x = 1.

– 3 – MATH2107 CALCULUS I

3. (4 points) Find the x-coordinates of the points on the graph of $y = x^3$ where the tangent line is parallel to the secant line that cuts the curve at x = -1 and x = 1.

4. (a)(4 points) Let
$$y = (x^2 + 5)^{\ln x}$$
. Find $\frac{dy}{dx}$.

(b) (3 points) Given that $f(x) = \cos 5x - \cos 7x - x - 1$. Find f''(0).

VERSION	II N	AME:
---------	------	------

MATH2107 CALCULUS I

5. (4 points) Use an appropriate local linear approximation to estimate the value of $\sin(46^\circ)$.

– 4 –

6. Let $f(x) = \ln(e^x + 1)$. (a) (2 points) Find a formula for $f^{-1}(x)$.

(b)(2 points) Find the derivative of the inverse function f^{-1} .

- 5 -MATH2107 CALCULUS I

The remainder of this exam consists of Multiple Choice questions. Circle the correct answer for each question. No partial credit will be given. (2 points each)

7.
$$\lim_{x \to +\infty} \frac{7x^5 - 2\sqrt{x} + 1}{3x^5 - \sqrt[3]{x} + 2} =$$

(A) 0 (B) + ∞ (C) $\frac{7}{3}$ (D) 7 (E) None of the above
8. If $f(x) = \pi^5$, then $f'(x) =$
(A) 1 (B) $5x^4$ (C) 0 (D) $5\pi^4$ (E) None of the above

9. The equation $12x^4 + 26x^2 + 11x^3 + 22x + 4 = 0$ has at least one solution in the interval

(A)
$$[1,2]$$
 (B) $[-5,-2]$ (C) $[0,2]$ (D) $[-\frac{1}{2},0]$ (E) $[0,1]$

-6- MATH2107 CALCULUS I

10.
$$\lim_{h \to 0} \frac{\log_2(x+1+h) - \log_2(x+1)}{h} =$$
(A) $\frac{\ln 2}{x} + 1$ (B) $\frac{2^x}{x+1}$ (C) $\frac{1}{x+1}$ (D) $\frac{1}{(x+1)\ln 2}$ (E) $\frac{\ln 2}{x+1}$

11. Given that
$$\frac{d}{dx}[f(x^2)] = 2x^2$$
 for $x \neq 0$. Then $f'(x^2) =$
(A) $f(2x)$ (B) x (C) $2xf(x^2)$ (D) $2x$ (E) None of the above

12.
$$\lim_{x \to 0} \frac{\cos(x) - 1}{x} =$$

(A) does not exist (B) -1 (C) 1 (D) 0 (E) undefined

CONTINUED

VERSION II NAME:	ID:	Section:

- 7 - MATH2107 CALCULUS I

VERSION II NAME:	ID:	Section:

– 8 – MATH2107 CALCULUS I