SULTAN QABOOS UNIVERSITY DEPARTMENT OF MATHEMATICS AND STATISTICS 9 March 2008

MATH 2107 CALCULUS I

TEST I VERSION I

(Time allowed: 60 minutes)

NAME:

ID#:_____Section:___

Instructions:

- This test contains 6 pages (3 sheets back to back) and 12 questions. The empty extra sheet is for rough work and will not be marked.
- Write your name, ID number and Section number in the first page and ID number at the top of each sheet.
- Attempt all questions, writing your answer in the space below the statement of the question. For questions 1-6 show all your work.
- For Multiple Choice questions, CIRCLE the correct answer.
- Please do NOT SEPARATE the pages of this booklet.

DO NOT WRITE ON THIS BOX!

Problem	points	score
1	5 pts	
2	4 pts	
3	5 pts	
4	7 pts	
5	4 pts	
6	3 pts	
7-12	12 pts	
TOTAL	40 pts	

VERSION I NAME: _____ ID: _____ Section: _____

– 2 – MATH2107 CALCULUS I

1. (a) (2 points) Find $\lim_{x \to 0^+} \frac{x^2 - 3x + 2}{x}$.

(b) (3 points) Let
$$f(x) = \begin{cases} \frac{x^2 + 5x - 14}{x^2 - 4}, & x \neq 2\\ 3, & x = 2. \end{cases}$$

Determine if f is continuous at x = 2.

2. (4 points) Find $\lim_{x \to 0} \frac{1 - \cos 3x}{x^2}$.

– 3 – MATH2107 CALCULUS I

3. A car is travelling on a straight road so that in t mins it reaches a distance of $s = 7t^3$ mtrs. (a) (2 points) What is the average velocity of the car over the first 10 mins of its travel ?

(b) (3 points) What is the instantaneous velocity at the end of 5 mins?

4. (a) (3 points) Find $\frac{dy}{dx}$ if $y = x^3 \tan x - \sec 5x + 2$.

(b) (4 points) Find an equation of the tangent line to the graph of $y = \frac{x^3 + 7}{x}$ at x = 1.

VERSION I NAME:	ID:	Section:_

– 4 –

MATH2107 CALCULUS I

5. (4 points) Use an appropriate local linear approximation to estimate the value of $(16.1)^{1/4}$.

6. (3 points) Suppose that f is a differentiable function with the property that f(x+h) = f(x) + f(h) - 7xh and $\lim_{h \to 0} \frac{f(h)}{h} = 4$. Find f'(x).

– 5 – MATH2107 CALCULUS I

The remainder of this exam consists of **Multiple Choice** questions. **CIRCLE** the correct answer for each question. No partial credit will be given. (2 points each)

7.
$$\lim_{x \to +\infty} \frac{3x^5 - 2x^2 + 4}{7x^3 - 2x^5 - 9}$$

(A) 0 (B) $+\infty$ (C) $-\frac{3}{2}$ (D) $\frac{3}{7}$ (E) None of the above

8. If
$$f(x) = \pi^2 - \pi^3 + \cos \pi - 1$$
, then $f'(x)$ is equal to
(A) $2\pi - 3\pi^2 - \sin \pi$ (B) 0 (C) $2\pi - 3\pi^2 + \sin \pi$ (D) $2\pi + 3\pi^2 + \sin \pi$
(E) None of the above

9. The graph of the function $f(x) = \sin x, -\pi \le x \le \pi$, has horizontal tangent lines at

(A)
$$x = \pm \frac{\pi}{4}$$
 (B) $x = \pm \pi$ (C) 0 (D) $x = \pm \frac{\pi}{2}$ (E) None of the above

- 6 - MATH2107 CALCULUS I

10. To prove that $\lim_{x\to -1} (9x+1) = -8$, we must show that given any positive number ϵ , we can find a positive number δ such that

$$|x+1| < \delta$$
 implies $|(9x+1)+8| < \epsilon$.

To achieve this task, if $\epsilon=0.05$ then δ can be taken as

(A)
$$\frac{1}{180}$$
 (B) $\frac{1}{45}$ (C) $\frac{2}{45}$ (D) $\frac{2}{9}$ (E) None of the above

11. Let
$$y = \cos x$$
. Then $\frac{d^{50}y}{dx^{50}}$ is equal to
(A) $-50\sin x$ (B) $-50\cos x$ (C) $\sin^{50} x$ (D) $\cos^{50} x$ (E) None of the above

12. Let
$$f(x) = \begin{cases} x, & x \ge 0\\ x+1, & x < 0. \end{cases}$$

Then

(A) f is differentiable everywhere

- (B) f is differentiable everywhere except at x = 0
- (C) f is differentiable everywhere except at x = 1
- (D) f is differentiable everywhere except at x = -1
- (E) None of the above

THE END OF THE TEST

VERSION I NAME:	ID:	Section:

-7- MATH2107 CALCULUS I

VERSION I NAME:	ID:	Section:

– 8 – MATH2107 CALCULUS I