
SQU  Department of Mathematics & Statistics
MATH 2108: Calculus II   Spring 2010

Homework Assignment

To submit no later than Saturday 8 May, 2010

· This assignment carries a 5% weight of the total course weight
· Present a clear, detailed and thought out work
· Your work must be independently executed
· All cases of plagiarism, if detected, will be dealt with as per university exam regulation
· An entire question or a part of it may be assessed by a quiz during the class

1.   The base of a solid V is the region bounded by 0and2,ln === yxxy . Find the
      volume of this solid if V has the following cross sections perpendicular to the x-axis:
      (a)   square cross sections
      (b)   semicircular cross sections
      (c)   equilateral triangle cross sections.

2.   A swimming pool viewed from above has an outline given by )5( xy +±= for
20 ££ x . The depth is given by 4 + x. Compute the volume of the pool.

3.   The shape generated when a circle is rotated around a line is called a torus. Use cylindrical
      shells to compute the volume of the torus obtained by revolving the circle 2 2 4x y+ =
      about the line x = 3.

4.   Evaluate the following:
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5.   Use a comparison to determine whether the integral converges or diverges:
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MORE QUESTIONS ON THE NEXT PAGE



6.   Theorem 1.4 on page 325 says “Every bounded, monotonic sequence converges.” Now
       answer each of the following with proper justifications:

  i.  Give an example of a bounded, monotonic sequence that converges.
 ii.  Give an example of a monotonic sequence that is bounded from above but diverges.
iii.  Give an example of a monotonic sequence that is bounded from below but diverges.

      iv.  Give an example of a convergent sequence that is bounded but not monotonic.

7.   Consider the following sequence { }na for positive integers n:
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      Determine, with justifications, whether or not the sequence converges.

8.   Determine whether the series converges or diverges:
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9.   Determine the values of p (a real number) for which the series converges:
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