- Write your name, ID and other details on front cover of your answer booklet
- Read and focus on the questions very carefully
- Answer all 7 (seven) questions
- A solution will be deemed complete only if it includes all the necessary steps and the required symbolisms
- All questions are self explanatory, so avoid seeking any further clarifications
$1 \quad[7+7=14$ Marks $]$ Evaluate the following integrals:
(a) $\int_{0}^{1} \frac{e^{-x}}{\sqrt{1-e^{-x}}} d x$
(b) $\int_{0}^{\pi / 2}\left(\sin ^{5} \theta\right)(\sqrt[3]{\cos \theta}) d \theta$.
$\underline{2}$ (a) [8 Marks] Prove that for any positive integer n,

$$
\int \cos ^{n} x d x=\frac{1}{n} \cos ^{n-1} x \sin x+\frac{n-1}{n} \int \cos ^{n-2} x d x
$$

(b) [4 Marks] Using part (a) or otherwise, evaluate $\int \cos ^{4} x d x$.
$\underline{3}$ (a) [6 Marks] The integral $\int_{0}^{1} 5 \pi x(2-x) d x$ represents the volume of a solid obtained by revolving a certain region about an axis. Sketch the region and the axis of revolution that produce the solid.
(b) [6 Marks] Find the area of the surface obtained by revolving about x - axis the curve $y=\sqrt{1+5 x}$ on [0, 2].

4 (a) [2 Marks] State the theorem on Limit Comparison Test for series.
(b) [6 Marks] Determine, with proper justifications, whether $\sum_{k=1}^{\infty} \frac{2010+5^{-k^{3}}}{k^{2}\left(1+e^{-k^{2}}\right)}$ is convergent or divergent.
$\underline{5}$ (a) [3 Marks] Give an example of a convergent geometric series, and explain why it is convergent.
(b) [3 Marks] Does the sequence $a_{n}=\cos (n \pi)$ converge or diverge? Justify your answer.
(c) [3 Marks] Does the series $\sum_{k=0}^{\infty}(-1)^{k+1} \cos (2 k \pi)$ converge or diverge? Justify your answer.
(d) [3 Marks] Determine whether the series $-1+\frac{1}{3}-\frac{1}{5}+\cdots$ is absolutely convergent or conditionally convergent or divergent. Justify your answer.

6 (a) $[8$ Marks $]$ Sketch the polar curves $r=\sin \theta+\cos \theta$ and $r=2 \cos \theta$, indicating the intercepts.
(b) [2 Marks] Write down the integral(s) representing the area of the region inside both the curves in part (a). (DO NOT COMPUTE THE INTEGRAL)
$\underline{7}$ (a) [5 Marks] Show that the power series representation of $f(x)=\tan ^{-1}\left(x^{2}\right)$ is given by:

$$
\sum_{k=0}^{\infty}(-1)^{k} \frac{x^{4 k+2}}{2 k+1}
$$

(b) [5 Marks] Find the radius of convergence and the interval of convergence of the power series in part (a).
(c) [2 Marks] Deduce that $1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\cdots=\frac{\pi}{4}$.

