2 Hrs 30 mins 22 May 2010

- Write your details and section number on the front cover of your answer booklet
- Read and focus on the questions very carefully
- Answer all 9 (NINE) questions - there are questions on the other side of this page
- For full credit all necessary steps must be shown, must be correct and must be written neatly

1. [6 Marks] Compute the volume of the solid generated by rotating about the y-axis the region enclosed by $y=\frac{1}{x^{2}}, x=2$ and $y=1$.
2. [6 Marks] Find the length of the curve $f(x)=\ln (\sec x)$ from $x=0$ to $x=\frac{\pi}{4}$.
3. $[6+8=14$ Marks $]$ Evaluate the integrals: (a) $\int \ln (x+1) d x$, (b) $\int \frac{\sec ^{4} \theta}{1+\tan \theta} d \theta$.
4. [6 Marks] Use a comparison to determine whether $\int_{0}^{\infty} \frac{1}{x+e^{x}} d x$ converges or diverges.
5. $[2 \times 7=14$ Marks $]$ Test the convergence of the following series: (give the name of the test you use):
(a) $\sum_{k=1}^{\infty}\left(\frac{\pi k+2}{7 k+1}\right)^{k}$
(b) $\sum_{k=1}^{\infty}\left(\frac{2^{k} k^{2}}{k!}\right)$.
6. [7 Marks] Determine whether the series $\sum_{k=2}^{\infty}(-1)^{k} \frac{1}{k \ln k}$ is absolutely convergent, conditionally convergent or divergent.
7. Given that $\sum_{k=1}^{\infty}(-1)^{k+1} \frac{(x-1)^{k}}{k}=\ln (x)$, with interval of convergence $(0,2]$.
(a) [2 Marks] Find the sum of the series $\sum_{k=1}^{\infty}(-1)^{k+1}\left(\frac{1}{k}\right)\left(\frac{1}{2}\right)^{k}$.
(b) [2 Marks] Is it true that $\sum_{k=1}^{\infty}(-1)^{k+1} \frac{2^{k}}{k}=\ln (3)$? Justify your answer.
(c) $[6$ Marks $]$ Find the power series representation of $f(x)=\frac{1}{x}$ about $x=1$.
8. Given the Taylor series of $\tan ^{-1} x=\sum_{k=0}^{\infty}(-1)^{k} \frac{x^{2 k+1}}{2 k+1}$ for $-1 \leq x \leq 1$:
(a) [3Marks] Compute $\lim _{x \rightarrow 0} \frac{\tan ^{-1}\left(x^{2}\right)-x^{2}}{x^{6}}$.
(b) [6 Marks] Use the given Taylor series, to show that:

$$
\int_{0}^{1} \frac{\tan ^{-1} x}{x} d x=\sum_{k=0}^{\infty}(-1)^{k} \frac{1}{(2 k+1)^{2}}
$$

9. (a) [4 Marks] Name the graphs of the following polar equations as circles, lines, spirals, limacons or roses:
(i) $r=-2$
(ii) $\theta=-2$
(iii) $r=-\theta$
(iv) $r=\frac{2}{\sin \theta+\cos \theta}$
(b) [4 Marks] Sketch the graph of $r=2+2 \cos \theta$ and present all the details.
