Sultan Qaboos University
 Department of Mathematics and Statistics

Important Instructions

- Make sure you write your name, number and section number on the exam paper and on the solution booklet.
- Solve all 10 questions. Make sure you show your complete, mathematically correct and neatly written solution.
- You are NOT allowed to share calculators or any other material during the test under any circumstances.
- Cellular phones are NOT allowed to be used as calculators or for any other purpose during the test.
- You should NOT ask the invigilator any questions about the exam.

Q1: Evaluate each one of the following integrals:
(i) $\int_{3}^{30} \frac{d x}{(x+2)^{\frac{3}{2}}}$
(ii) $\int_{0}^{2} x \tan ^{-1}\left(x^{2}\right) d x$
(iii) $\int e^{5 x} \sin ^{3}\left(e^{5 x}\right) \cos \left(e^{5 x}\right) d x$
(iv) $\int \frac{(x+2)(x-1)}{(x-2)\left(x^{2}+1\right)} d x$

Solution: (i)

$$
\begin{aligned}
\int_{3}^{30} \frac{d x}{(x+2)^{\frac{3}{2}}} & \left.=\frac{(x+2)^{\frac{-3}{2}+1}}{\frac{-3}{2}+1}\right]_{3}^{30} \\
& =-2(32)^{\frac{-1}{2}}+2(5)^{\frac{-1}{2}} \\
& =\frac{2}{\sqrt{5}}-\frac{2}{\sqrt{32}} .
\end{aligned}
$$

(ii)

$$
\begin{aligned}
\int_{0}^{2} x \tan ^{-1}\left(x^{2}\right) d x & \left.=\frac{x^{2}}{2} \tan ^{-1}\left(x^{2}\right)\right]_{0}^{2}-\int_{0}^{2} \frac{x^{2}}{2} \frac{2 x}{1+x^{4}} d x \\
& =2 \tan ^{-1} 4-0-\int_{0}^{2} \frac{x^{3}}{1+x^{4}} d x \\
& =2 \tan ^{-1} 4-\frac{1}{4} \int_{0}^{2} \frac{4 x^{3}}{1+x^{4}} d x \\
& \left.=2 \tan ^{-1} 4-\frac{1}{4} \ln \left(1+x^{4}\right)\right]_{0}^{2} \\
& =2 \tan ^{-1} 4-\frac{1}{4} \ln (17)+\frac{1}{4} \ln (1) \\
& =2 \tan ^{-1} 4-\frac{1}{4} \ln (17) .
\end{aligned}
$$

(iii) Let $u=\sin \left(e^{5 x}\right)$, then $d u=5 e^{5 x} \cos \left(e^{5 x}\right)$. Thus

$$
\begin{aligned}
\int e^{5 x} \sin ^{3}\left(e^{5 x}\right) \cos \left(e^{5 x}\right) d x & =\frac{1}{5} \int u^{3} d u \\
& =\frac{1}{20} u^{4}+c \\
& =\frac{1}{20} \sin ^{4}\left(e^{5 x}\right)+c
\end{aligned}
$$

(iv) We use partial fractions.

$$
\begin{aligned}
\frac{(x+2)(x-1)}{(x-2)\left(x^{2}+1\right)} & =\frac{A}{x-2}+\frac{B x+C}{x^{2}+1} \\
(x+2)(x-1) & =A\left(x^{2}+1\right)+(x-2)(B x+C)
\end{aligned}
$$

Substitute $x=2$ to obtain $A=\frac{4}{5}$.
Substitute $x=0$ to obtain $C=\frac{7}{5}$.
Substitute $x=1$ to obtain $0=2 A-(B+C)$, which implies $B=\frac{1}{5}$.
Hence

$$
\begin{aligned}
\int \frac{(x+2)(x-1)}{(x-2)\left(x^{2}+1\right)} d x & =\frac{4}{5} \int \frac{1}{x-2} d x+\frac{1}{5} \int \frac{x+7}{x^{2}+1} d x \\
& =\frac{4}{5} \ln |x-2|+\frac{1}{10} \ln \left(x^{2}+1\right)+\frac{7}{5} \tan ^{-1} x+c .
\end{aligned}
$$

Q2: Solve each of (a) and (b).
(a) Find the volume of the solid generated by revolving the region bounded by the curves $y=\ln (x), x=e$ and $y=0$ about the line $x=-1$.

Solution:
METHOD 1: Using the method of cylindrical shells.

$$
\begin{aligned}
V & =\int_{1}^{e} 2 \pi(x-(-1)) \ln (x) d x \\
& =2 \pi \int_{1}^{e}(x+1) \ln (x) d x \\
& \left.=2 \pi\left(\frac{(x+1)^{2}}{2} \ln x\right]_{1}^{e}-\int_{1}^{e} \frac{(x+1)^{2}}{2} \frac{1}{x} d x\right) \\
& =2 \pi\left(\frac{(e+1)^{2}}{2}-\frac{1}{2} \int_{1}^{e}\left(\frac{x^{2}}{x}+\frac{2 x}{x}+\frac{1}{x}\right) d x\right) \\
& \left.=\pi(e+1)^{2}-\pi\left(\frac{x^{2}}{2}+2 x+\ln (x)\right]_{1}^{e}\right) \\
& =\frac{1}{2} \pi\left(e^{2}+5\right) .
\end{aligned}
$$

METHOD 2: Using the washers method.

$$
V=\int_{0}^{1} \pi(e+1)^{2} d y-\int_{0}^{1} \pi\left(e^{y}+1\right)^{2} d y=\frac{\pi}{2}\left(e^{2}+5\right) .
$$

(b) Determine whether the integral $\int_{1}^{\infty} \frac{d x}{(x+1) \ln (x+1)}$ is convergent or divergent.

Solution:

$$
\int_{1}^{\infty} \frac{d x}{(x+1) \ln (x+1)}=\lim _{t \rightarrow \infty} \int_{1}^{t} \frac{d x}{(x+1) \ln (x+1)} .
$$

Let $\ln (x+1)=u$, we obtain $d x=(x+1) d u$. Thus, we have

$$
\begin{aligned}
\lim _{t \rightarrow \infty} \int_{\ln (2)}^{\ln (t+1)} \frac{d u}{u} & \left.=\lim _{t \rightarrow \infty}(\ln u]_{\ln 2}^{\ln (t+1)}\right) \\
& \left.=\lim _{t \rightarrow \infty}(\ln \ln (t+1))-\ln \ln (2)\right) \\
& =\infty .
\end{aligned}
$$

Hence, the integral is divergent.

Q3: Find the limit (if exists) in each of the following sequences:
(i) $\quad a_{n}=\frac{(-1)^{n} n}{3 n+1}$
(ii) $\quad b_{n}=\sqrt{\left(4 n^{2}-n\right)}-2 n$
(iii) $\quad c_{n}=\sqrt{4-\frac{\sin \left(3^{n}\right)}{5^{n}}}$.

Solution:

(i) Since $\lim _{n \rightarrow \infty} \frac{n}{3 n+1}=\frac{1}{3}$, then $\lim a_{n}$ oscillates between $\frac{1}{3}$ and $\frac{-1}{3}$. Hence, the limit does not exist.
(ii)

$$
\begin{aligned}
\lim _{n \rightarrow \infty} b_{n} & =\lim _{n \rightarrow \infty}\left(\sqrt{4 n^{2}-n}-2 n\right) \frac{\left(\sqrt{4 n^{2}-n}+2 n\right)}{\left(\sqrt{4 n^{2}-n}+2 n\right)} \\
& =\lim _{n \rightarrow \infty} \frac{4 n^{2}-n-4 n^{2}}{\sqrt{4 n^{2}-n}+2 n} \\
& =\lim _{n \rightarrow \infty} \frac{-n}{\sqrt{4 n^{2}-n}+2 n} \\
& =\lim _{n \rightarrow \infty} \frac{-1}{\sqrt{4-\frac{1}{n}}+2} \\
& =\frac{-1}{4} .
\end{aligned}
$$

(iii) First, we use squeezing theorem to find $\lim _{n \rightarrow \infty} \frac{\sin 3^{n}}{5^{n}}$.

$$
\begin{gathered}
-1 \leq \sin 3^{n} \leq 1 \\
\frac{-1}{5^{n}} \leq \frac{\sin 3^{n}}{5^{n}} \leq \frac{1}{5^{n}} \\
0 \leq \lim _{n \rightarrow \infty} \frac{\sin 3^{n}}{5^{n}} \leq 0
\end{gathered}
$$

Hence, $\lim _{n \rightarrow \infty} \frac{\sin 3^{n}}{5^{n}}=0$, and consequently

$$
\lim _{n \rightarrow \infty} c_{n}=\sqrt{4}=2
$$

Q4: Pick any 2 of the following series and determine whether they converge or diverge. If you solve more than 2 , only the first two answered ones will be graded.
(i) $\sum_{k=1}^{\infty} \frac{3(-1)^{k} k}{\sqrt{k^{2}+1}}$
(ii) $\sum_{k=1}^{\infty} \frac{\left(k^{2}\right)(k!)}{(2 k)!}$
(iii) $\sum_{k=1}^{\infty}\left(\frac{k}{2 k+1}\right)^{2 k}$

Solution:

(i) Since

$$
\lim _{k \rightarrow \infty} \frac{3(-1)^{k} k}{\sqrt{k^{2}+1}}=\lim _{k \rightarrow \infty} \frac{3(-1)^{k}}{\sqrt{1+\frac{1}{k}}}
$$

does not exist, then it is not zero, and thus, the series in (i) is divergent.
(ii) We use the ratio test.

$$
\begin{aligned}
\lim _{k \rightarrow \infty} \frac{(k+1)^{2}(k+1)!/(2(k+1))!}{k^{2} k!/(2 k)!} & =\lim _{k \rightarrow \infty} \frac{(k+1)^{2}(k+1)}{(2 k+2)(2 k+1) k^{2}} \\
& =\lim _{k \rightarrow \infty} \frac{(k+1)^{2}}{2(2 k+1) k^{2}} \\
& =\text { zero. }
\end{aligned}
$$

Since the limit we obtained from the ratio test is less than 1 , then the series in (ii) is convergent.
(iii) We use the root test.

$$
\lim _{k \rightarrow \infty}\left(\left(\frac{k}{2 k+1}\right)^{2 k}\right)^{\frac{1}{k}}=\lim _{k \rightarrow \infty}\left(\frac{k}{2 k+1}\right)^{2}=\left(\frac{1}{2}\right)^{2}=\frac{1}{4}<1
$$

Hence, the root test assures that the series in (iii) is convergent.

Q5: Solve each of (a) and (b)
(a) Find the sum $\sum_{k=1}^{\infty} \frac{2}{k(k+1)}$
(b) Show that $\sum_{k=0}^{\infty} \frac{(-1)^{k}}{3^{k}} \cos ^{k}(3 x)$ is a geometric series, then find the sum if it exists.

Solution:
(a)

$$
\begin{aligned}
\sum_{k=1}^{\infty} \frac{2}{k(k+1)} & =2 \sum_{k=1}^{\infty} \frac{1}{k(k+1)} \\
& =2 \sum_{k=1}^{\infty}\left(\frac{1}{k}-\frac{1}{k+1}\right) \\
& =2\left[\left(1-\frac{1}{2}\right)+\left(\frac{1}{2}-\frac{1}{3}\right)+\left(\frac{1}{3}-\frac{1}{4}\right)+\cdots\right] \\
& =2 .
\end{aligned}
$$

(b)

$$
\sum_{k=0}^{\infty} \frac{(-1)^{k}}{3^{k}} \cos ^{k}(3 x)=\sum_{k=0}^{\infty}\left(\frac{(-1)}{3} \cos (3 x)\right)^{k}=\sum_{k=0}^{\infty} r^{k},
$$

where $r=\frac{-\cos (3 x)}{3}$. Hence, it is a geometric series with $a=1$ and $r=\frac{-1}{3} \cos (3 x)$.
Since $|r|=\frac{1}{3}|\cos (3 x)| \leq \frac{1}{3}$, then the series converges to

$$
\frac{a}{1-r}=\frac{1}{1+\frac{1}{3} \cos (3 x)} .
$$

Q6: Answer each of (a) and (b).
(a) Consider $f(x)=\ln (x)$.
(i) Construct the Taylor series for $f(x)$ about $c=1$.
(ii) Find the Taylor series for $g(x)=(x-1) f(x)$ about $c=1$.
(b) Find the Interval and Radius of Convergence for the power series $\sum_{k=0}^{\infty} \frac{(x-1)^{k}}{2^{k}}$.

Solution:

(a) The Taylor series of $\ln (x)$ about $c=1$ is in the form

$$
\sum_{k=0}^{\infty} \frac{a_{k}}{k!}(x-1)^{k}
$$

where we need to find a_{k} for all k.

$$
\begin{aligned}
a_{0} & =f(1)=\ln (1)=0 \\
a_{1} & =f^{\prime}(1)=\left.\frac{1}{x}\right|_{x=1}=1 \\
a_{2} & =f^{\prime \prime}(1)=\left.\frac{-1}{x^{2}}\right|_{x=1}=-1 \\
a_{3} & =f^{\prime \prime \prime}(1)=\left.\frac{2}{x^{3}}\right|_{x=1}=2 \\
a_{4} & =f^{\prime \prime \prime \prime}(1)=\left.\frac{2(-3)}{x^{4}}\right|_{x=1}=-3! \\
\vdots & =\vdots
\end{aligned}
$$

Hence, $a_{0}=0$ and $a_{k}=(-1)^{k+1}(k-1)$! for all $k \geq 1$. Thus,

$$
\ln (x)=\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k}(x-1)^{k}
$$

Now,

$$
g(x)=(x-1) f(x)=\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k}(x-1)^{k+1}
$$

(b) We use the ratio test.

$$
\lim _{k \rightarrow \infty}\left|\frac{(x-1)^{k+1} / 2^{k+1}}{(x-1)^{k} / 2^{k}}\right|=\lim _{k \rightarrow \infty} \frac{1}{2}|x-1|=\frac{1}{2}|x-1|
$$

Now,

$$
\frac{1}{2}|x-1|<1 \Leftrightarrow|x-1|<2 \Leftrightarrow-1<x<3
$$

Next, we test the end points. At $x=-1$:

$$
\sum_{k=0}^{\infty} \frac{(-2)^{k}}{2^{k}}=\sum_{k=0}^{\infty}(-1)^{k}, \quad \text { which is divergent. }
$$

At $x=3: \sum_{k=0}^{\infty} \frac{(3-1)^{k}}{2^{k}}=\sum_{k=0}^{\infty}(1)^{k}$, which is divergent.
Hence, the interval of convergence is $(-1,3)$ and the radius of convergence is $\rho=2$.

Q7: Answer each of (a) and (b).
(a) Given that the Maclaurin series for $f(x)=\frac{x}{1+x^{2}}$ is

$$
x-x^{3}+x^{5}+\ldots+(-1)^{k+1} x^{2 k-1}+\cdots, \quad-1<x<1
$$

(i) Find the Maclaurin series for $\frac{1}{2} \ln \left(1+x^{2}\right)$. Use sum notation.
(5 points)
(ii) Evaluate the sum $\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k(2)^{2 k}}$.

Solution: Since

$$
\int f(x) d x=\frac{1}{2} \int \frac{2 x}{1+x^{2}} d x=\frac{1}{2} \ln \left(1+x^{2}\right)+c,
$$

then

$$
\begin{aligned}
\frac{1}{2} \ln \left(1+x^{2}\right) & =\int\left(x-x^{3}+x^{5}+\ldots+(-1)^{k+1} x^{2 k-1}+\cdots\right) d x \\
& =\frac{x^{2}}{2}-\frac{x^{4}}{4}+\frac{x^{6}}{6}+\cdots+\frac{(-1)^{k+1} x^{2 k}}{2 k}+\cdots+c
\end{aligned}
$$

To find c, we substitute $x=0$ to obtain

$$
\frac{1}{2} \ln 1=0=0+c .
$$

Hence, $c=0$ and

$$
\frac{1}{2} \ln \left(1+x^{2}\right)=\sum_{k=1}^{\infty}(-1)^{k+1} \frac{x^{2 k}}{2 k}
$$

Next, we obtain (ii) by substituting $x=\frac{1}{2}$ in the power series of $\frac{1}{2} \ln \left(1+x^{2}\right)$. Thus

$$
\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k(2)^{2 k}}=\ln \left(1+\left(\frac{1}{2}\right)^{2}\right)=\ln \left(\frac{5}{4}\right)
$$

(b) Given that

$$
\frac{1}{1-x}=\sum_{k=0}^{\infty} x^{k}, \quad|x|<1
$$

Find the Taylor series for $\frac{1}{1+4 x^{2}}$ about $c=0$.
Solution:

$$
\frac{1}{1+4 x^{2}}=\sum_{k=0}^{\infty}\left(-4 x^{2}\right)^{k}=\sum_{k=0}^{\infty}(-1)^{k} 2^{2 k} x^{2 k}
$$

Q8: Circle the correct answer.
(a) One of the following series is convergent:
(i) $\sum_{k=1}^{\infty} \frac{1}{\sqrt{k}}$
(ii) $\sum_{k=1}^{\infty} 1$
(iii) $\sum_{k=1}^{\infty} \frac{(-1)^{k}}{k}$
(iv) $\sum_{k=1}^{\infty}(-1)^{k}$
(b) One of the following series is divergent:
(i) $\sum_{k=1}^{\infty}\left(\frac{-1}{4}\right)^{k}$
(ii) $\sum_{k=1}^{\infty} \frac{1}{k}$
(iii) $\sum_{k=1}^{\infty} \frac{x^{k}}{k!}$
(iv) $\sum_{k=1}^{\infty} \frac{\sin (k \pi)}{k \pi}$
(c) One of the following series is absolutely convergent:
(i) $\sum_{k=1}^{\infty} \frac{(-1)^{k+1} k}{k^{3}+5}$
(ii) $\sum_{k=1}^{\infty} \frac{(-1)^{k}}{k}$
(iii) $\sum_{k=1}^{\infty}(-\sqrt{3})^{k}$
(iv) $\sum_{k=1}^{\infty} \frac{\cos (k \pi)}{k}$
(d) The polar point $(r, \theta)=\left(-\sqrt{2}, \frac{\pi}{4}\right)$ has the rectangular representation $(x, y)=$
(i) $(1,1)$
(ii) $(-1,-1)$
(iii) $(-1,1)$
(iv) $(1,-1)$

Q9: Match each equation with the correct answer in the right column.
(1 point each)

$\#$	The polar equation	The graph
(i)	$r=-3$	a line
(ii)	$\theta=\frac{3 \pi}{5}$	a circle
(iii)	$r=\sin (\theta)$	a cardioid
(iv)	$1=\frac{2 \sin (\theta)}{\sin (\theta)+\cos (\theta)}$	a point
(v)	$r=\sin (\theta)+\cos (\theta)$	a parabola

Q10: State whether True or False. No need for justification.
(i) A non-power series and its derivative have the same radius of convergence.
(ii) If $\sum_{k=1}^{\infty} a_{k}$ converges, then $\lim _{k \rightarrow \infty} a_{k}=0$.
(iii) If a series is convergent absolutely, then it is convergent.
(iv) If both $\sum_{k=1}^{\infty} a_{k}$ and $\sum_{k=1}^{\infty} b_{k}$ diverge, then $\sum_{k=1}^{\infty}\left(a_{k}-b_{k}\right)$ diverges.
(v) If a series is convergent, then it is convergent absolutely.
(vi) If a series is conditionally convergent, then it is convergent.
(vii) Each rectangular point (x, y) has a unique (only one) polar representation (r, θ).

Good Luck

