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Answer all Questions and Show all Working 
 

1. (a)  [6 points]  Find the volume of the solid formed by revolving the region bounded by the curves 

2 xy  and 2xy   about the horizontal line 4y . State the method used. 

 

     (b)  [5 points]  Compute the area of the surface formed by revolving the curve xy  1  for 

32  x  about the x-axis. 

 

     (c)  [4 points]  Find the points  ,r  at which the curves 3cos r  and cos4r  intersect. 

 

2. [5+5+5 points]  Evaluate the following integrals:   

(a) dxxx
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3. (a)  [4+4 points]  Find the limit (if it exists) in each of the following sequences:  

      (i)  
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(b)  [5 points]  Determine whether the sequence 
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4. (a) [4+4 points]  Determine whether the following series converges or diverges, and state the      

                           convergence test used: 

  (i)  
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(b) [6 points]  Determine whether the series 
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 converges absolutely, converges        

                        conditionally or diverges. State the convergence test used. 

 

5. (a) [5 points]  Find the sum of the convergent series 
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(b) [6 points]  Find the radius and interval of convergence for the power series 
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6. (a) [5 points]  Construct the Taylor series for 1)(  xexf  at 1c , answer in sigma notation.      

(b) [4 points]  Use the Taylor series in part (a) to show that 
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7. Given the series    
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(a)  [4 points]  Find the series representation for 
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ln  in sigma notation.       

(b)  [4 points]  Use the first three nonzero terms of the power series representation of  21ln x  to  

                         evaluate the definite integral   dxx 
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8. [2 points each]  Circle the correct answer for the following Multiple Choice Questions: 

i.  If the partial sum 
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(A) does not exist       (B)  0        (C)         (D)  .  

ii.  If the sequence  1nna  converges to 0L , then the alternating series  
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(A) conditionally converges  (B) diverges  (C) absolutely converges 

       (D) has the sum 0L . 

iii.  If   dxxf
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 converges to 0L  and  kfak   for 3k , then the series 
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(A) converges by the Integral test  (B) diverges  (C) has the sum 0L  

       (D) may converge or diverge. 

iv.  One of the following series is absolutely convergent 

(A) 
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v.  If 1lim 1 
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(A) converges by the Ratio test  (B) absolutely converges by the Ratio test 

(C) diverges by the kth-Term test (D) may diverge or converge. 
 

9. [1 point each]  Name the graphs of the following polar equations as Line, Circle, Cardioid, Roses, 

Limacon or Spiral: 

(i)   2lnr   (ii) 
 cossin2

1


r   (iii)    sin3r   (iv) tan2    (v)  cos2sin3 r . 

   

Full Mark : 100 points 

  


