Sultan Qaboos University
 College of Science
 Department of Mathematics and Statistics

Summer 2010
MATH2108: Calculus II
FINAL EXAM
Date: $\mathbf{8}$ August 2010
Time Allowed: $\mathbf{2}$ Hours $\mathbf{4 5}$ Minutes

Answer all Questions and Show all Working

1. (a) [6 points] Find the volume of the solid formed by revolving the region bounded by the curves $y=x+2$ and $y=x^{2}$ about the horizontal line $y=4$. State the method used.
(b) [5 points] Compute the area of the surface formed by revolving the curve $y=\sqrt{1+x}$ for $2 \leq x \leq 3$ about the x-axis.
(c) [4 points] Find the points (r, θ) at which the curves $r \cos \theta=3$ and $r=4 \cos \theta$ intersect.
2. $[\mathbf{5}+\mathbf{5} \mathbf{+ 5}$ points] Evaluate the following integrals:
(a) $\int x^{2} \tan ^{-1} x d x$
(b) $\int e^{x}\left[\tan \left(e^{x}\right)+\sec \left(e^{x}\right)\right]^{2} d x$
(c) $\int \frac{x^{2}+3}{(x+1)^{3}} d x$.
3. (a) $[\mathbf{4}+\mathbf{4}$ points $]$ Find the limit (if it exists) in each of the following sequences:
(i) $\left\{(-1)^{n} \frac{n}{n+\sqrt{n}}\right\}_{n=1}^{\infty}$
(ii) $\{\ln (2 n)-\ln (n+2)\}_{n=3}^{\infty}$.
(b) [5 points] Determine whether the sequence $\left\{\frac{(n+1)^{n}}{(n+1)!}\right\}_{n=1}^{\infty}$ is monotonic.
4. (a) $[\mathbf{4}+\mathbf{4}$ points $]$ Determine whether the following series converges or diverges, and state the convergence test used:
(i) $\sum_{k=1}^{\infty}\left(\frac{2 \sqrt{k}+1}{2+\sqrt{k}}\right)^{k / 2}$
(ii) $1+\frac{2!}{1 \cdot 3}+\frac{3!}{1 \cdot 3 \cdot 5}+\frac{4!}{1 \cdot 3 \cdot 5 \cdot 7}+\frac{5!}{1 \cdot 3 \cdot 5 \cdot 7 \cdot 9}+\cdots$.
(b) [6 points] Determine whether the series $\sum_{k=2}^{\infty} \frac{(-1)^{k}}{\ln k}$ converges absolutely, converges conditionally or diverges. State the convergence test used.
5. (a) [5 points] Find the sum of the convergent series $\sum_{k=1}^{\infty} \frac{3}{(2 k-1)(2 k+1)}$.
(b) [6 points] Find the radius and interval of convergence for the power series $\sum_{k=1}^{\infty} \frac{(x-1)^{k}}{k 2^{k}}$.
6. (a) [5 points] Construct the Taylor series for $f(x)=e^{-x+1}$ at $c=1$, answer in sigma notation.
(b) [4 points] Use the Taylor series in part (a) to show that $\sum_{k=0}^{\infty} \frac{(-1)^{k}}{k!}=\frac{1}{e}$ and $\sum_{k=0}^{\infty} \frac{1}{k!}=e$.
7. Given the series $\ln (1+x)=\sum_{k=1}^{\infty}(-1)^{k+1} \frac{x^{k}}{k}$ for $-1<x \leq 1$.
(a) [4 points] Find the series representation for $\ln \left(\frac{1+x}{1-x}\right)$ in sigma notation.
(b) [4 points] Use the first three nonzero terms of the power series representation of $\ln \left(1+x^{2}\right)$ to evaluate the definite integral $\int_{0}^{1} \ln \left(1+x^{2}\right) d x$.
8. [2 points each] Circle the correct answer for the following Multiple Choice Questions:
i. If the partial sum $\sum_{k=0}^{n} a_{k}=\pi-\frac{2}{\sqrt[3]{n}}$, then the limit $\lim _{k \rightarrow \infty} a_{k}$ is equal to
(A) does not exist
(B) 0
(C) π
(D) ∞.
ii. If the sequence $\left\{a_{n}\right\}_{n=1}^{\infty}$ converges to $L \neq 0$, then the alternating series $\sum_{k=1}^{\infty}(-1)^{k+1} a_{k}$
(A) conditionally converges
(B) diverges
(C) absolutely converges
(D) has the sum $L \neq 0$.
iii. If $\int_{3}^{\infty} f(x) d x$ converges to $L \neq 0$ and $a_{k}=f(k)$ for $k \geq 3$, then the series $\sum_{k=3}^{\infty} a_{k}$
(A) converges by the Integral test
(B) diverges
(C) has the sum $L \neq 0$
(D) may converge or diverge.
iv. One of the following series is absolutely convergent
(A) $\sum_{k=1}^{\infty} \frac{\cos \pi k}{k}$
(B) $\sum_{k=1}^{\infty} \frac{\sin \pi k}{k}$
(C) $\sum_{k=1}^{\infty}(-e)^{k}$
(D) $\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{\sqrt{k}}$.
v. If $\lim _{k \rightarrow \infty} \frac{a_{k+1}}{a_{k}}=1$, then the series $\sum_{k=1}^{\infty} a_{k}$
(A) converges by the Ratio test
(B) absolutely converges by the Ratio test
(C) diverges by the kth-Term test
(D) may diverge or converge.
9. [1 point each] Name the graphs of the following polar equations as Line, Circle, Cardioid, Roses, Limacon or Spiral:
(i) $r=\ln (2+\theta)$
(ii) $r=\frac{1}{2 \sin \theta+\cos \theta}$
(iii) $r=3 \sin (\theta+\pi)$
(iv) $-\sqrt{2}=\tan \theta$
(v) $r=3 \sin \theta-2 \cos \theta$.
