SULTAN QABOOS UNIVERSITY DEPARTMENT OF MATHEMATICS AND STATISTICS 09 January 2010

MATH 2107 CALCULUS I

Fall 2009 Final Examination (Version I)

(Time allowed: 60 minutes)

NAME:	ID#:	Section:
<u> </u>		

Instructions:

- This exam contains 13 pages and 18 questions. The empty pages at the end are for rough work and will not be marked.
- Write your name, ID number and Section number on this page. Write your ID number at the top of each sheet.
- Attempt all questions, writing your answer in the space below the statement of the question. For questions 1–8 show all your work.
- Do not give more than one answer to a question.
- For Multiple Choice Questions, Circle the correct answer.
- Please DO NOT SEPARATE the pages of this booklet.

DO NOT WRITE IN THIS BOX!

Question	Max Marks	Score
1	9	
2	10	
3	11	
4	10	
5	15	
6	7	
7	9	
8	9	
9–18	20	
TOTAL	100	

Name:

ID:

1. (a) 3 marks Find
$$\lim_{x\to 0^-} \frac{3\sin x}{1-\cos(2x)}$$

(b) 6 marks Let
$$f(x) = \begin{cases} \frac{\sin(2x)}{x}, & x < 0 \\ a, & x = 0 \\ b^2 e^x + b, & x > 0. \end{cases}$$

Find values of the constants a and b for which f is continuous at x = 0.

2. (a) 6 marks Use the **definition** of the derivative to show that

$$f(x) = \begin{cases} 2x + 2, & x \le 1\\ 4\sqrt{x}, & x > 1 \end{cases}$$

is differentiable at x = 1.

(b) 4 marks Use the properties of logarithms to simplify, and then find $\frac{dy}{dx}$ if

$$y = \ln\left(\sqrt{\frac{\sin x}{1 - 2x}}\right)$$

- **3.** (a) Ten marks Given that the function $f(x) = x^5 + 3x^3 + x$ has the inverse g(x), find
 - (i) g'(5) and (ii) $\frac{\mathrm{d}}{\mathrm{d}x} [f(2g(x))]$ at x = 5.

(b) $\boxed{4 \text{ marks}}$ Use the Mean Value Theorem to show that $|\tan^{-1} a| < |a|$ for all $a \neq 0$.

Name: ID:

4. 10 marks An open box is to be made from a 24 cm by 24 cm square piece of cardboard by cutting out squares of equal size from the four corners and folding up the sides. What should be the dimensions of the squares to obtain a box with the largest volume?

5. 15 marks Given
$$f(x) = \frac{1}{(x-1)(x-2)}$$
, $f'(x) = \frac{3-2x}{(x-1)^2(x-2)^2}$, and $f''(x) = \frac{2(3x^2 - 9x + 7)}{(x-1)^3(x-2)^3}$, find:

(a) x and y intercepts, (b) vertical asymptotes and the behaviour of f near the vertical asymptotes, (c) horizontal asymptotes, (d) critical numbers, (e) intervals in which f increases and decreases, (f) local extrema, (g) concavity and the x-coordinates of any inflection points. Then sketch the graph of f in the **next page** # 7.

Name: ID:

		y ,	\				
		4					
		4 -					
		2					
							x
2		,		,		,	\longrightarrow
	١٠)	1 1	-	· ·	b •	j	4
3 –	2 –	1	-		2 ;	3 4	1
3 -	2 –	-1			2 ;	3 4	1
3 -	-2 -		_		2 :	3 4	1
3 -	-2 -	-1 -2 -			2	3 4	1
J -	-2 -			2	2	3	1
3 -	-2 -				2	3	1
J -	-2 -				2	3	1
3 -	-2 -				2	3	1
3 -	-2 -	-2			2		1
J -	-2 -	-2			2	3	1
3 -	-2 -	-2			2	3	4
3 -	-2 -	-2					1
	-2 -	-2			2		1

6. $\boxed{7 \text{ marks}}$ Use the limit of Riemann sum to compute the area under the curve $y=16-x^2$ over the interval $\begin{bmatrix} 0, \ 4 \end{bmatrix}$.

7. $\boxed{4+5 \text{ marks}}$ Evaluate the following integrals using suitable substitutions:

(a)
$$\int \frac{9}{x(2+3\ln x)^4} \, \mathrm{d}x$$

(b)
$$\int_2^5 \frac{x-2}{\sqrt{x-1}} \, \mathrm{d}x$$

8. (a) 6 marks Show that $\sinh^{-1} x = \ln (x + \sqrt{x^2 + 1})$ for all x.

(b) 3 marks Given $y = x \sinh x$, find y''(0).

The remainder of this exam consists of **Multiple Choice** questions. Circle the correct answer for each question. **No partial credit will be given.** (2 marks for each question)

9. The exact value of $\tanh(\ln 3)$ is

(A) $\frac{5}{4}$

(B) 0

(C) $\frac{4}{5}$

(D) none of them

10. Let f be a differentiable function of x, and g(x) = f(b+mx) + f(b-mx), where b and m are non-zero constants. Then g'(0) is

(A) 1

(B) 0

(C) b

(D) *m*

11. If $v(t)=2\sin t$ is the velocity of a particle at time t, then the average value of v on $0\leq t\leq \frac{\pi}{2}$ is

- (A) $\frac{4}{\pi}$
- (B) $\frac{1}{\pi}$

(C) 2

(D) none of them

- **12.** $\lim_{x \to 0^+} \frac{\ln x}{x 1 e^x}$ is
 - $(A) -\infty$
- **(B)** 0
- (C) ∞

(D) none of them

- **13.** If the function f(x) has critical numbers at x=-1, x=0, x=1 and if $f^{\prime\prime}(-1)<0$, $f^{\prime\prime}(0)=0$, $f^{\prime\prime}(1)>0$, then the graph of y=f(x) has a local minimum at
 - **(A)** x = 0
- (B) x = -1 and x = 1 (C) x = -1 (D) x = 1

- **14.** $\lim_{x \to 1} \frac{\int_1^x \sqrt{t^5 + 8} \, dt}{x 1}$ is
 - **(A)** 0

(B) 3

(C) 1

(D) $2\sqrt{2}$

- **15.** The graph of $y = 2x + x^{4/3}$ is concave up in the interval

 - (A) $(-\infty, 0)$ (B) $(-\infty, 0) \cup (0, \infty)$ (C) $(0, \infty)$ (D) none of them

16. If $g(x) = x \ln(-x)$, then g'(-e) is

(B)
$$1 - \frac{1}{e}$$

(D) none of them

17. If f(x) = 7 + g(x) for $3 \le x \le 5$, and $\int_3^5 g(x) dx = -4$ then $\int_3^5 [f(x) + g(x)] dx$ is

(A) -1 (B) 6 (C) 10 (D) 3

- **18.** $\sum_{i=0}^{30} (3+i)$ is
 - **(A)** 555
- **(B)** 558
- **(C)** 468
- (D) none of them

This page is for rough work. It will not be graded.

This sheet is for rough work. It will not be graded.