Sultan Qaboos University Department of Physics, College of Science PHYS2107: Physics for Engineering I - Test 1

	1	2	3	4	Tot.
Name:					
ID No:					
Section:					

Saturday, 1st October 2005

1. A particle moves along the x axis according to the equation:

$$x = -50t + 2t^2$$

where x is in meters and t in seconds.

Find:

- a) The position of the particle when it momentarily stops.
- **b)** The acceleration of the particle when it momentarily stops.
- c) The velocity of the particle when it returns to its initial position.
- d) The average velocity in the time interval t = 10 s and t = 15 s.
- e) The average speed in the time interval t = 10 s and t = 15 s.

(10 marks)

Time: 5:15 – 6:45 pm

2. Two vectors **a** and **b** are given by:

$$\mathbf{a} = (4.0 \text{m})\mathbf{i} - (3.0 \text{m})\mathbf{j} + (2.0 \text{m})\mathbf{k}$$
 and $\mathbf{b} = (-2.0 \text{m})\mathbf{i} + (4.0 \text{m})\mathbf{j} - (3.0 \text{m})\mathbf{k}$

In unit-vector notation, find:

- a) The vector $\mathbf{a} + \mathbf{b}$
- **b)** The vector $\mathbf{a} \mathbf{b}$
- c) The angle between the vecor a and z-axis.
- d) The magnitude of a vector c such that: $c = (a + b) \times (a b)$

(10 marks)

3. A ball is thrown from the edge of a building of height $h_1 = 100$ m with an initial speed of 20 m/s at an angle of 20° below the horizontal (as shown in the figure). The wall is 50 m from the release point of the ball, as shown in the figure.

Find:

- a) The velocity of the ball as it hits the wall (in unit-vector notation and magnitude-direction notation)
- **b)** The horizontal distance traveled by the ball when the line tangent to its path makes an angle of 37° with the horizontal.
- c) The vector displacement Δr between t = 1 s and t = 2 s.

(10 marks)

4. Two blocks of masses $m_1 = 10$ kg and $m_2 = 4$ kg are connected by a cord over a massless and frictionless pulley. The block m_1 is on 53°- inclined plane whereas block m_2 is on 37°- inclined plane. Both inclined planes are frictionless. A horizontal force **F** of magnitude 25 N is applied on block m_1 as shown in the figure.

- a) What is the <u>acceleration</u> of the blocks and the <u>tension</u> in the cord?
- **b)** What is the velocity of m_1 when it has traveled a distance of 5 m down the 53° -inclined plane?

(10 marks)