Sultan Qaboos University Department of Physics, College of Science PHYS2107: Physics for Engineering I - Test 1

Name:
ID No:
Section:

1	2	3	4	Tot.

Full Mark: 40 points
 Answer all questions

Saturday, $1^{\text {st }}$ October 2005
Time: 5:15-6:45 pm

1. A particle moves along the x axis according to the equation:

$$
x=-50 t+2 t^{2}
$$

where x is in meters and tin seconds.
Find:
a) The position of the particle when it momentarily stops.
b) The acceleration of the particle when it momentarily stops.
c) The velocity of the particle when it returns to its initial position.
d) The average velocity in the time interval $\mathrm{t}=10 \mathrm{~s}$ and $\mathrm{t}=15 \mathrm{~s}$.
e) The average speed in the time interval $\mathrm{t}=10 \mathrm{~s}$ and $\mathrm{t}=15 \mathrm{~s}$.
2. Two vectors \mathbf{a} and \mathbf{b} are given by:
$\mathbf{a}=(4.0 \mathrm{~m}) \mathbf{i}-(3.0 \mathrm{~m}) \mathbf{j}+(2.0 \mathrm{~m}) \mathbf{k} \quad$ and $\quad \mathbf{b}=(-2.0 \mathrm{~m}) \mathbf{i}+(4.0 \mathrm{~m}) \mathbf{j}-(3.0 \mathrm{~m}) \mathbf{k}$
In unit-vector notation, find:
a) The vector $\mathbf{a}+\mathbf{b}$
b) The vector $\mathbf{a}-\mathbf{b}$
c) The angle between the vecor \mathbf{a} and z-axis.
d) The magnitude of a vector \mathbf{c} such that: $\mathbf{c}=(\mathbf{a}+\mathbf{b}) \times(\mathbf{a}-\mathbf{b})$
3. A ball is thrown from the edge of a building of height $h_{1}=100 \mathrm{~m}$ with an initial speed of $20 \mathrm{~m} / \mathrm{s}$ at an angle of 20° below the horizontal (as shown in the figure). The wall is 50 m from the release point of the ball, as shown in the figure.

Find:
a) The velocity of the ball as it hits the wall (in unit-vector notation and magnitudedirection notation)
b) The horizontal distance traveled by the ball when the line tangent to its path makes an angle of 37° with the horizontal.
c) The vector displacement $\Delta \mathbf{r}$ between $\mathrm{t}=1 \mathrm{~s}$ and $\mathrm{t}=2 \mathrm{~s}$.
4. Two blocks of masses $\mathrm{m}_{1}=10 \mathrm{~kg}$ and $\mathrm{m}_{2}=4 \mathrm{~kg}$ are connected by a cord over a massless and frictionless pulley. The block m_{1} is on 53° - inclined plane whereas block m_{2} is on 37° - inclined plane. Both inclined planes are frictionless. A horizontal force \mathbf{F} of magnitude 25 N is applied on block m_{1} as shown in the figure.

a) What is the acceleration of the blocks and the tension in the cord?
b) What is the velocity of m_{1} when it has traveled a distance of 5 m down the 53° inclined plane?

