
Chapter 2

Differentiation

2.1 Tangent Lines and

Velocity
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2. The tangent line is vertical and coin-
cides with the y-axis:
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3. The tangent line is vertical and coin-
cides with the y-axis:
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4. The tangent line overlays the line:
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5. At x = 1 the slope of the tangent line
appears to be about −1.

6. The slope at x = 1 is approximately
−3.

7. C, B, A, D. At the point labeled C,
the slope is very steep and negative.
At point B, the slope is zero and at
point A, the slope is just more than
zero. The slope of the line tangent to
point D is large and positive.

8. In order of increasing slope: D (large
negative), C (small negative), B
(small positive), and A (large posi-
tive).

9. (a) Points (1, 0) and (2, 6).
Slope is 6−0

1
= 6.

(b) Points (2, 6) and (3, 24).
Slope is 24−6

1
= 18.

(c) Points (1.5, 1.875) and (2, 6).
Slope is 6−1.875

.5
= 8.25.

94
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(d) Points (2, 6) and (2.5, 13.125).
Slope is 13.125−6

.5
= 14.25.

(e) Points (1.9, 4.959) and (2, 6).
Slope is 6−4.959

.1
= 10.41.

(f) Points (2, 6) and (2.1, 7.161).
Slope is 7.161−6

.1
= 11.61.

(g) Slope seems to be approximately
11.

10. (a) Points (1,
√
2) and (2,

√
5).

Slope is
√
5−√2
2−1 ≈ 0.5040.

(b) Points (2,
√
5) and (3,

√
10).

Slope is
√
10−√3
3−2 ≈ 0.9262.

(c) Points (1.5, 1.8028) and
(2, 2.2361).
Slope is 2.2361−1.8028

2−1.5 ≈ 0.8666.
(d) Points (2, 2.2361) and (2.5, 2.2693).

Slope is 2.2693−2.2361
2.5−2 ≈ 0.9130.

(e) Points (1.9, 2.1471) and
(2, 2.2361).
Slope is 2.2361−2.1471

2−1.9 ≈ 0.8898.
(f) Points (2, 2.2361) and (2.1, 2.3259).

Slope is 2.3259−2.2361
2.1−2 ≈ 0.8987.

(g) Slope seems to be approximately
0.89.

11. (a) Points (1, .54) and (2,−.65).
Slope is −.65−.54

1
= −1.19.

(b) Points (2,−.65) and (3,−.91).
Slope is −.91−(−.65)

1
= −.26.

(c) Points (1.5,−.628) and
(2,−.654).
Slope is −.654−(−.628)

.5
= −.05.

(d) Points (2,−.65) and (2.5, 1.00).
Slope is 1.00−(−.65)

.5
= 3.3.

(e) Points (1.9,−.89) and (2,−.65).
Slope is −.65−(−.89)

.1
= 2.4.

(f) Points (2,−.654) and (2.1,−.298).
Slope is −.298−(−.654)

.1
= 3.56.

(g) Slope seems to be approximately
3.

12. (a) Points (1,−2.1850) and
(2, 1.1578).

Slope is 1.1578−(−2.1850)
2−1 ≈ 3.3429.

(b) Points (2, 1.1578) and (3,−0.2910).
Slope is −0.2910−1.1578

3−2 ≈ −1.4488.

(c) Points (1.5,−0.1425) and
(2, 1.1578).

Slope is 1.1578−(−0.1425)
2−1.5 ≈

−2.6007.

(d) Points (2, 1.1578) and (2.5,−3.3805).
Slope is −3.3805−1.1578

2.5−2 ≈ −9.0767.

(e) Points (1.9, 0.7736) and
(2, 1.1578).
Slope is 1.1578−0.7736

2−1.9 ≈ 3.8427.

(f) Points (2, 1.1578) and (2.1, 1.7778).
Slope is 1.7778−1.1578

2.1−2 ≈ 6.1996.

(g) Slope seems to be approximately
4.68.

13.
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14. All the lines are very close to the tan-
gent line:
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15. The sequence of graphs should look
like:
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The third secant line is indistinguish-
able from the tangent line.

16. The sequence of graphs should look

like:
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The third secant line is indistinguish-
able from the tangent line.

17. Slope is

lim
h→0

f(1 + h)− f(1)

h

= lim
h→0

(1 + h)2 − 2− (−1)
h

= lim
h→0

h2 + 2h

h
= lim

h→0
h+ 2 = 2.

Tangent line is y− (−1) = 2(x−1) or
y = 2x− 3.
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18. Slope is

lim
h→0

f(0 + h)− f(0)

h

= lim
h→0

h2

h
= 0.

Tangent line is y = −2.
2

x
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2
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10-1-2

19. Slope is

lim
h→0

f(−2 + h)− f(−2)
h

= lim
h→0

(−2 + h)2 − 3(−2 + h)− (10)
h

= lim
h→0

4− 4h+ h2 + 6− 3h− 10
h

= lim
h→0
−7h+ h2

h
= lim

h→0
−7 + h = −7.

Tangent line is y − 10 =
−7(x + 2) or y = −7x − 4.
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20. Slope is

lim
h→0

f(1 + h)− f(1)

h

= lim
h→0

(1 + 3h+ 3h2 + h3) + (1 + h)− 2
h

= lim
h→0

4h+ 3h2 + h3

h
= lim

h→0
4 + 3h+ h2 = 4.

Tangent line is y = 4(x− 1) + 2.
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21. Slope is

lim
h→0

f(1 + h)− f(1)

h

= lim
h→0

2
(1+h)+1

− 2
1+1

h

= lim
h→0

2
2+h
− 1
h

= lim
h→0

³
2−(2+h)
2+h

´
h

= lim
h→0

¡ −h
2+h

¢
h

= lim
h→0

−1
2 + h

=
−1
2

Tangent line is y − 1 = −1
2
(x− 1) or

y = −x
2
+ 3

2
.
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22. Slope is

lim
h→0

f(0 + h)− f(0)

h

= lim
h→0

h
h−1 − 0

h

= lim
h→0

1

h− 1 = −1.

Tangent line is y = −x.
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23. Slope is

lim
h→0

f(−2 + h)− f(−2)
h

= lim
h→0

p
(−2 + h) + 3− 1

h

= lim
h→0

√
h+ 1− 1

h

= lim
h→0

√
h+ 1− 1

h
·
√
h+ 1 + 1√
h+ 1 + 1

= lim
h→0

(h+ 1)− 1
h(
√
h+ 1 + 1)

=
1√

h+ 1 + 1
=
1

2

Tangent line is y − 1 =
1
2
(x + 2) or y = 1

2
x + 2.

3

1

2

-2

x

-4
0

20

24. Slope is

lim
h→0

f(1 + h)− f(1)

h

= lim
h→0

p
(1 + 2h+ h2) + 1−√2

h
We then multiply by

(
√
2 + 2h+ h2 +

√
2)

(
√
2 + 2h+ h2 +

√
2)

to get

lim
h→0

(2 + 2h+ h2)− 2
h(
√
2 + 2h+ h2 +

√
2)

= lim
h→0

h(2 + h)

h(
√
2 + 2h+ h2 +

√
2)

= lim
h→0

2 + h

(
√
2 + 2h+ h2 +

√
2)

=
2

2
√
2
=

√
2

2
.

Tangent line is y =
√
2
2
(x− 1) +√2.
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25. Numerical evidence suggests that

lim
h→0+

f(1 + h)− f(1)

h
= 1

while



2.1 TANGENT LINES AND VELOCITY 99

lim
h→0−

f(1 + h)− f(1)

h
= −1.

Since these are not equal, there is no
tangent line. A graph makes it appar-
ent that this function has a “corner”
at x = 1.

26. Tangent line does not exist at x = 1
because the function is not defined
there.

27. Numerical evidence suggests that

lim
h→0+

f(0 + h)− f(0)

h

= lim
h→0−

f(0 + h)− f(0)

h
= 0

Since the slope of the tangent line
from the left equals that from the
right and the function appears to be
continuous in the graph, we conjec-
ture that the tangent line exists and
has slope 0.

28. Tangent line does not exist at x = 1
because the function has a sharp cor-
ner there, causing the limit of slopes
to fail to exist.

29. Looking at the graph, we see that
there is a jump discontinuity at a =
0. Thus there cannot be a tangent
line, as the tangent line from the left
would be different from the tangent
line from the right.

30. Tangent line does not exist at x = 0
because the function is not defined
there. Tangent line would exist with
slope −2 if the function were defined
to be 0 at x = 0.

31. (a) Points (0, 10) and (2, 74). Aver-
age velocity is 64−0

2
= 32.

(b) Second point (1, 26). Average
velocity is 64−26

1
= 48.

(c) Second point (1.9, 67.76). Aver-
age velocity is 74−67.76

.1
= 62.4.

(d) Second point (1.99, 73.3616).
Average velocity is 74−73.3616

.01
=

63.84.

(e) The instantaneous velocity
seems to be approaching 64.

32. (a) Points (0, 0) and (2, 26). Aver-
age velocity is 26−0

2−0 = 13.

(b) Second point (1, 4). Average ve-
locity is 26−4

2−1 = 22.

(c) Second point (1.9, 22.477). Av-
erage velocity is 26−22.477

2−1.9 =
35.23.

(d) Second point (1.99, 25.6318).
Average velocity is 26−25.6318

2−1.99 =
36.8203.

(e) The instantaneous velocity
seems to be approaching 37.

33. (a) Points (0, 0) and (2,
√
20). Aver-

age velocity is
√
20−0
2−0 = 2.236068.

(b) Second point (1, 3). Average ve-

locity is
√
20−3
2−1 = 1.472136.

(c) Second point (1.9,
√
18.81). Av-

erage velocity is
√
20−√18.81
2−1.9 =

1.3508627.

(d) Second point (1.99,
√
19.8801).

Average velocity is
√
20−√19.8801
2−1.99 =

1.3425375.

(e) One might conjecture that these
numbers are approaching 1.34.
The exact limit is 6√

20
≈

1.341641.

34. (a) Points (0, 0) and (2, 47.9426).
Average velocity is 47.9426−0

2−0 =
23.9713.

(b) Second point (1, 24.7404). Av-
erage velocity is 47.9426−24.7404

2−1 =
23.2022.
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(c) Second point (1.9, 45.7338). Av-
erage velocity is 47.9426−45.7338

2−1.9 =
22.0871.

(d) Second point (1.99, 47.7230).
Average velocity is 47.9426−47.7230

2−1.99 =
21.9545.

(e) The instantaneous velocity
seems to be decreasing to
slightly less than 22.

35. (a) Velocity at time t = 1 is

lim
h→0

f(1 + h)− f(1)

h

= lim
h→0
−16(1 + h)2 + 5− (−11)

h

= lim
h→0
−16− 32h− 16h2 + 5 + 11

h

= lim
h→0
−32h− 16h2

h
= lim

h→0
−32− 16h = −32.

(b) Velocity at time t = 2 is

lim
h→0

f(2 + h)− f(2)

h

= lim
h→0
−16(4 + 4h+ h2) + 5 + 59

h

= lim
h→0
−64− 64h− 16h2 + 64

h
= lim

h→0
−64− 16h = −64.

36. (a) Velocity at time t = 0 is

lim
h→0

f(0 + h)− f(0)

h

= lim
h→0

√
h+ 16− 4

h
·
√
h+ 16 + 4√
h+ 16 + 4

= lim
h→0

(h+ 16)− 16
h(
√
h+ 16 + 4)

= lim
h→0

1√
h+ 16 + 4

= 1/8.

(b) Velocity at time t = 2 is

lim
h→0

f(2 + h)− f(2)

h
Multiplying by√
h+ 18 +

√
18√

h+ 18 +
√
18

gives

= lim
h→0

(h+ 18)− 18
h(
√
h+ 18 +

√
18)

= lim
h→0

1√
h+ 18 +

√
18
=

1

2
√
18
.

37. The slope of the tangent line at p = 1
is approximately

−20− 0
2− 0 = −10

which means that at p = 1, the freez-
ing temperature of water decreases by
10 degrees Celsius per 1 atm increase
in pressure. The slope of the tangent
line at p = 3 is approximately

−11− (−20)
4− 2 = 4.5

which means that at p = 3, the freez-
ing temperature of water increases by
4.5 degrees Celsius per 1 atm increase
in pressure.

38. The slope of the tangent line at v =
50 is approximately

47− 28
60− 40 = .95.

This means that at an initial speed of
50 mph, the range of the soccer kick
increases by .95 yards per 1 mph in-
crease in initial speed.

39. The hiker reached the top at the high-
est point on the graph (about 1.75
hours). The hiker was going the
fastest on the way up at this point.
The hiker was going the fastest on the
way down at the point where the tan-
gent line has the least (i.e. most neg-
ative) slope, at about 3 hours, at the
end of the hike. Where the graph is
level, the hiker was either resting, or
walking on flat ground.
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40. The tank is the fullest at the first
spike (at around 8am). The tank is
the emptiest just before this at the
lowest dip (around 7am). The tank is
filling up the fastest where the graph
has the steepest positive slope (in be-
tween 7 and 8am). The tank is emp-
tying the fastest just after 8am where
the graph has the steepest negative
slope. The level portions most likely
represent night, when water usage is
at a minimum.

41. A possible graph of the temperature
with respect to time:
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Graph of the rate of change of the
temperature:
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42. Possible graph of bungee-jumper’s
height:
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43. (a) To say that

f(4)− f(2)

2
= 21,034

per year is to say that the aver-
age rate of change in the bank
balance between Jan. 1, 2002
and Jan. 1, 2004 was 21,034 ($
per year).

(b) To say that

2[f(4)− f(3.5)] = 25,036

(note that 2[f(4) − f(3.5)] =
f(4)−f(3.5)

1/2
) per year is to say that

the average rate of change be-
tween July 1, 2003 and Jan. 1,
2004 was 25,036 ($ per year).

(c) To say that

lim
h→0

f(4 + h)− f(4)

h
= $30,000
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is to say that the instantaneous
rate of change in the balance on
Jan. 1, 2004 was 30,000 ($ per
year).

44. (a) f(40)−f(38)
2

= −2103 represents
the average rate of depreciation
between 38 and 40 thousand
miles.

(b) f(40)−f(39)
2

= −2040 represents
the average rate of depreciation
between 39 and 40 thousand
miles.

(c) lim
h→0

f(40+h)−f(40)
h

= −2000 repre-
sents the instantaneous rate of
depreciation in the value of the
car when it has 40 thousand
miles.

45. We are given θ(t) = 0.4t2. We are ad-
vised that θ is measured in radians,
and that t is time. Let us assume that
t is measured in seconds.

Three rotations corresponds to θ =
6π. Proceeding, if θ(t) = 6π then
0.4t2 = 6π and solving for t yields
t =
√
15π ≈ 6.865 (seconds).

At that exact moment of time (call it
a) , the exact angular velocity is

lim
h→0

θ(a+ h)− θ(a)

h

= lim
h→0

.4(
√
15π + h)2 − 6π

h

= lim
h→0

.4(15π + 2h
√
15π + h2)− 6π)
h

= lim
h→0

.8h
√
15π + .4h2

h
= lim

h→0
.8
√
15π + .4h = .8

√
15π ≈

5.492

and the units would be radians per
second.

46. First find the time corresponding to
two rotations: 4π = 0.4t2 ⇒ t ≈

5.6050.
Now the angular velocity is

lim
h→0

θ(5.6 + h)− θ(5.6)

h

= lim
h→0

0.4(5.6 + h)2 − 0.4(5.6)2
h

= lim
h→0

4.48h+ 0.4h2

h
= 4.48.

The third rotation is helpful because
the angular velocity increases.

47. vavg =
f(s)− f(r)

s− r

=
as2 + bs+ c− (ar2 + br + c)

s− r

=
a(s2 − r2) + b(s− r)

s− r

=
a(s+ r)(s− r) + b(s− r)

s− r
= a(s+ r) + b

Let v(r) be the velocity at t = r. We
have

v(r) = lim
h→0

f(r + h)− f(r)

h

= lim
h→0

a(r2 + 2rh+ h2) + bh− ar2

h

= lim
h→0

h(2ar + ah+ b)

h
= lim

h→0
2ar + ah+ b = 2ar + b.

So v(r) = 2ar + b. The same argu-
ment shows that v(s) = 2as+ b.

Finally,
v(r) + v(s)

2
=
(2ar + b) + (2as+ b)

2
2a(s+ r) + 2b

2
= a(s+ r) + b = vavg

48. f(t) = t3− t works with r = 0, s = 2.
The average velocity between r and s
is 6−0

2−0 = 3. The instantaneous veloc-
ity at r is

lim
h→0

(0 + h)3 − (0 + h)− 0
h

= 0,

and the instantaneous velocity at s is
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lim
h→0

(2 + h)3 − (2 + h)− 6
h

= lim
h→0

8 + 12h+ 6h2 + h3 − 2− h− 6
h

= lim
h→0

11 + 6h+ h2 = 11,

so the average between the instanta-
neous velocities is 5.5.

49. Let x = h + a. Then h = x − a, and
clearly

f(a+ h)− f(a)

h
=

f(x)− f(a)

x− a
.

It is also clear that x→ a if and only
if h → 0. Therefore if one of the two
limits exists, then so does the other
and

lim
h→0

f(a+ h)− f(a)

h
= lim

x→a

f(x)− f(a)

x− a
.

50. For exercise 17,

lim
x→1

f(x)− f(1)

x− 1
= lim

x→1
(x2 − 2)− (−1)

x− 1
= lim

x→1
(x− 1)(x+ 1)

x− 1 = 2.

For exercise 19,

lim
x→−2

f(x)− f(−2)
x+ 2

lim
x→−2

(x2 − 3x)− 10
x+ 2

= lim
x→−2

(x− 5)(x+ 2)
x+ 2

= −7.

51. First, compute the slope of the tan-
gent line. Using the result of #49, it
is convenient to assume x is near but
not exactly 1/2, and write

lim
x→1/2

f(x)− f(1/2)

x− (1/2) =
x2 − (1/4)
x− (1/2)

= lim
x→1/2

(x− (1/2))(x+ (1/2))
x− (1/2)

= lim
x→1/2

x+ (1/2) = 1

Next, we quickly write the equation of
the tangent line in point-slope form:

y − (1/4) = 1(x − (1/2)) or y =
x− (1/4).
The location of the tree is the point
(x, y) = (1, 3/4) and this point is in-
deed on the tangent line. The tree
will be hit if the car gets that far (that
being something we have no way of
knowing).

52. It is clear from the graph that no
other tangent line will pass through
the point (1, 3

4
). No other lines

through this point will be tangent to
the curve y = x2.

10-1-2

6

8

2

0

x
-2

2

4

3

2.2 The Derivative

1. Using (2.1):

f 0(1) = lim
h→0

f(1 + h)− f(1)

h

= lim
h→0

3(1 + h) + 1− (4)
h

= lim
h→0

3h

h
= lim

h→0
3 = 3

Using (2.2):

lim
b→1

f(b)− f(1)

b− 1
= lim

b→1
3b+ 1− (3 + 1)

b− 1
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= lim
b→1

3b− 3
b− 1

= lim
b→1

3(b− 1)
b− 1 = lim

b→1
3 = 3

2. Using (2.1):

f 0(1) = lim
h→0

f(1 + h)− f(1)

h

= lim
h→0

3(1 + h)2 + 1− 4
h

= lim
h→0

6h+ 3h2

h
= lim

h→0
6 + 3h = 6.

Using (2.2):

f 0(1) = lim
x→1

f(x)− f(1)

x− 1
= lim

x→1
(3x2 + 1)− 4

x− 1
= lim

x→1
3(x− 1)(x+ 1)

x− 1
= lim

x→1
3(x+ 1) = 6.

3. Using (2.1): Since

f(1 + h)− f(1)

h
=

p
3(1 + h) + 1− 2

h

=

√
4 + 3h− 2

h
·
√
4 + 3h+ 2√
4 + 3h+ 2

=
4 + 3h− 4

h(
√
4 + 3h+ 2)

=
3h

h(
√
4 + 3h+ 2)

=
3√

4 + 3h+ 2
, we have:

f 0(1) = lim
h→0

f(1 + h)− f(1)

h

= lim
h→0

3√
4 + 3h+ 2

=
3p

4 + 3(0) + 2
=
3

4
.

Using (2.2): Since

f(b)− f(1)

b− 1
=

√
3b+ 1− 2
b− 1

=
(
√
3b+ 1− 2)(√3b+ 1 + 2)
(b− 1)(√3b+ 1 + 2)

=
(3b+ 1)− 4

(b− 1)√3b+ 1 + 2
=

3(b− 1)
(b− 1)√3b+ 1 + 2

=
3√

3b+ 1 + 2
, we have:

f 0(1) = lim
b→1

f(b)− f(1)

b− 1
= lim

b→1
3√

3b+ 1 + 2

=
3√
4 + 2

=
3

4
.

4. Using (2.1):

f 0(2) = lim
h→0

f(2 + h)− f(2)

h

= lim
h→0

3
(2+h)+1

− 1
h

= lim
h→0

3
3+h
− 3+h

3+h

h

= lim
h→0

−h
3+h

h

= lim
h→0

−1
3 + h

= −1
3
.

Using (2.2):

f 0(2) = lim
x→2

f(x)− f(2)

x− 2
= lim

x→2

3
x+1
− 1

x− 2
= lim

x→2

3
x+1
− x+1

x+1

x− 2
= lim

x→2

−(x−2)
x+1

x− 2
= lim

x→2
−1
x+ 1

= −1
3
.

5. lim
h→0

f(x+ h)− f(x)

h

= lim
h→0

3(x+ h)2 + 1− (3(x)2 + 1)
h

= lim
h→0

3x2 + 6xh+ 3h2 + 1− (3x2 + 1)
h

= lim
h→0

6xh+ 3h2

h
= lim

h→0
6x+ 3h = 6x
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6. f 0(x) = lim
h→0

f(x+ h)− f(x)

h

= lim
h→0

(x+ h)2 − 2(x+ h) + 1− f(x)

h

= lim
h→0

2xh+ h2 − 2h
h

= lim
h→0

h(2x+ h− 2)
h

= 2x− 2.

7. lim
b→x

f(b)− f(x)

b− x

= lim
b→x

3
b+1
− 3

x+1

b− x

= lim
b→x

3(x+1)−3(b+1)
(b+1)(x+1)

b− x

= lim
b→x

−3(b− x)

(b+ 1)(x+ 1)(b− x)

= lim
b→x

−3
(b+ 1)(x+ 1)

=
−3

(x+ 1)2

8. f 0(x) = lim
h→0

f(x+ h)− f(x)

h

= lim
h→0

2
2(x+h)−1 − 2

2x−1
h

= lim
h→0

2(2x−1)−2(2x+2h−1)
(2x+2h−1)(2x−1)

h

= lim
h→0

−4h
(2x+2h−1)(2x−1)

h

= lim
h→0

−4
(2x+ 2h− 1)(2x− 1)

=
−4

(2x− 1)2

9. lim
b→x

f(b)− f(x)

b− x

= lim
b→x

√
3b+ 1−√3x+ 1

b− x

Multiplying by√
3b+ 1 +

√
3x+ 1√

3b+ 1 +
√
3x+ 1

gives

lim
b→x

(3b+ 1)− (3x+ 1)
(b− x)(

√
3b+ 1 +

√
3x+ 1)

= lim
b→x

3(b− x)

(b− x)(
√
3b+ 1 +

√
3x+ 1)

= lim
b→x

3

(
√
3b+ 1 +

√
3x+ 1)

=
3

2
√
3x+ 1

10. f 0(x) = lim
h→0

f(x+ h)− f(x)

h

= lim
h→0

2(x+ h) + 3− (2x+ 3)
h

= lim
h→0

2h

h
= 2.

11. lim
b→x

f(b)− f(x)

b− x

= lim
b→x

b3 + 2b− 1− (x3 + 2x− 1)
b− x

= lim
b→x

b3 − x3 + 2b− 2x
b− x

= lim
b→x

(b− x)(b2 + bx+ x2 + 2)

b− x
= lim

b→x
b2 + bx+ x2 + 2

= 3x2 + 2

12. f 0(x) = lim
h→0

f(x+ h)− f(x)

h

= lim
h→0

(x+ h)4 − 2(x+ h)2 + 1− f(x)

h
= lim

h→0
4x3+6x2h+4xh2+h3−4x−2h

= 4x3 − 4x.
13. The function has negative slope for

x < 0, positive slope for x > 0, and
zero slope at x = 0. Its slope function
(derivative) can only be (c).

14. (e). The graph (e) is zero in two
places and negative in between. The
graph of exercise 18 is flat in two
places, and decreasing between.

15. Here, moving from left to right, the
slope goes from negative to positive
to negative to positive. Its slope func-
tion (derivative) can only be (a) .

16. (d). Graph is decreasing everywhere
so the derivative will be negative ev-
erywhere.
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17. The graph is increasing to the left of
the jump and decreasing to the right.
The derivative of this function must
be (b) which is postive to the left of
the jump and negative to the right.

18. (f). The graph (f) is zero in two places
and positive in between. The graph of
exercise 22 is flat in two places, and
increasing between.

19. The derivative should look like:
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20. The derivative should look like:
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21. The derivative should look like:

 

10

5

-5

-10

 

3-3

22. The derivative should look like:
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23. One possible graph of f(x):
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24. One possible graph of f(x):
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25. f(x) is not differentiable at x = 0
or x = 2. The graph looks like:
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26. f(x) is not differentiable at x =
0 or x = ±1. We give three
different graphs of different regions
because of the differences in scale:
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27. f(x) = xp =⇒ f 0(x) = pxp−1.

If p ≥ 1, then p− 1 ≥ 0, so f 0(0) = 0.
Also, if p = 0, then f(x) = 1, so
f 0(0) = 0. However, if p < 1 but
p 6= 0, then

f 0(x) =
p

x1−p

where 1−p ≥ 0, and so f 0(0) does not
exist.

28. Let u = ch so h = u
c
. Then we have

lim
h→0

f(a+ ch)− f(a)

h

= lim
u
c
→0

f(a+ u)− f(a)
u
c

= lim
u→0

f(a+ u)− f(a)
u
c

= lim
u→0

c

µ
f(a+ u)− f(a)

u

¶
= c lim

u→0
f(a+ u)− f(a)

u
= cf 0(a)

29. lim
x→a

[f(x)]2 − [f(a)]2
x2 − a2

= lim
x→a

[f(x)− f(a)][f(x) + f(a)]

(x− a)(x+ a)

=

∙
lim
x→a

f(x)− f(a)

(x− a)

¸ ∙
lim
x→a

f(x) + f(a)

(x+ a)

¸
= f 0(a) · 2f(a)

2a

=
f(a)f 0(a)

a

30. We know that the limit

f 0(0) = lim
x→0

f(x)− f(0)

x− 0 = lim
x→0

f(x)

x
exists. Since f(x) < 0 for all x we

know that
f(x)

x
> 0 for all x < 0 and

f(x)

x
< 0 for all x > 0. The only way

for this to be true and for lim
x→0

f(x)

x
to

exist is if

f 0(0) = lim
x→0

f(x)

x
= 0.

31. We estimate the derivative at x = 60
as follows:
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3.9− 2.4
80− 40 =

1.5

40
= 0.0375

For every increase of 1 revolution per
second of topspin, there is an increase
of 0.0375◦ in margin of error.

32. We estimate the derivative at x = 8.5
as follows:

1.04− .58

9− 8 = 0.46

For every increase of 1 foot in height
of serving point, there is an increase
of 0.46◦ in margin of error.

33. Compute average velocities:

Time Interval Average Velocity
(1.7, 2.0) 9.0
(1.8, 2.0) 9.5
(1.9, 2.0) 10.0
(2.0, 2.1) 10.0
(2.0, 2.2) 9.5
(2.0, 2.3) 9.0

Our best estimate of the velocity at
t = 2 is 10.

34. Compute average velocities:

Time Interval Average Velocity
(1.7, 2) 7.0−4.6

2−1.7 = 8
(1.8, 2) 8.5
(1.9, 2) 9
(2, 2.1) 8
(2, 2.2) 8
(2, 2.3) 7.67

A velocity of between 8 and 9 seems
to be a good guess.

35. We compile the rate of change in Ton-
MPG over each of the four two-year
intervals for which data is given:

intervals rate of change
(1992,1994) 45.7−44.9

2
= .4

(1994,1996) .4
(1996,1998) .4
(1998,2000) .2

These rates of change are measured in
Ton-MPG per year. Either the first or
second (they happen to agree) could
be used as an estimate for the one-
year interval “1994” while only the
last is a promising estimate for the
one-year interval “2000”. The mere
fact that all these numbers are posi-
tive suggests that efficiency is improv-
ing, but the last number being smaller
seems to suggest that the rate of im-
provement is slipping.

36. The average rate of change from 1992
to 1994 is 0.05, and from 1994 to 1996
is 0.1, so a good estimate of the rate
of change in 1994 is 0.75. The average
rate of change from 1998 to 2000 is -
0.2, and this is a good estimate for the
rate of change in 2000. Comparing to
exercise 35, we see that the MPG per
ton increased, but the actual MPG for
vehicles decreased. The weight of ve-
hicles must have increased, and if the
weight remained constant then the ac-
tual MPG would have increased.

37. We prepare a table of values for the
function f(x) = xx (when x is near 1).
Difference quotients based at x = 1
are then compiled in the last column.

x y = xx y−1
x−1

1.1000000 1.1105342 1.1053424
1.0100000 1.0101005 1.0100503
1.0010000 1.0010010 1.0010005
1.0001000 1.0001000 1.0001000
1.0000100 1.0000100 1.0000100
1.0000010 1.0000010 1.0000010
1.0000001 1.0000001 1.0000001
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The evidence of this table strongly
suggests that the difference quo-
tients (essentially indistinguishable
from the values themselves) are head-
ing toward 1. If true, this would mean
that f 0(1) = 1.

38. Numerically estimate

lim
x→π

f(x)− f(π)

x− π
= lim

x→π

xsinx − 1
x− π

.

Computing this expression for values
of x close to π, we see the limit is ap-
proximately 1.

39. The left-hand derivative is

D−f(0) = lim
h→0−

f(h)− f(0)

h

= lim
h→0−

2h+ 1− 1
h

= 2

The right-hand derivative is

D+f(0) = lim
h→0+

f(h)− f(0)

h

= lim
h→0+

3h+ 1− 1
h

= 3

40. The left-hand derivative is

D−f(0) = lim
h→0−

f(h)− f(0)

h

= lim
h→0−

h2 − 0
h

= 0

The right-hand derivative is

D+f(0) = lim
h→0+

f(h)− f(0)

h

= lim
h→0+

h3 − 0
h

= 0

41. D+f(0) = lim
h→0+

f(h)− f(0)

h

= lim
h→0

k(h)− k(0)

h
= k0(0).

D−f(0) = lim
h→0−

f(h)− f(0)

h

= lim
h→0

g(h)− g(0)

h
= g0(0)

If f(x) has a jump discontinuity at
x = 0, it would be because its left
limit at x = 0, namely g(0), is not
the same as the value which is k(0).
In that case there could be no left
derivative (by Theorem 2.1) and one
would have to reject the statement
D−f(0) = g0(0).

42. The derivative f 0(0) exists if and only
if the limit lim

h→0
f(h)−f(0)

h
exists, and

this limit exists if and only if the one-
sided limits exist and are equal. But
the one-sided limits are the left- and
right-hand derivatives.

43. If f 0(x) > 0 for all x, then the tan-
gent lines all have positive slope, so
the function is always sloping up.

44. If f 0(x) < 0 for all x, then the tan-
gent lines all have negative slope, so
the function is always sloping down to
the right.

45.

4

2

3

1

-10
0

x

100-5 5

From the graph, we see that f(x) ap-
pears continuous at x = 0, where it
has both limit and value zero. How-
ever, when we try to compute its
derivative at x = 0, we come to the
difference quotient

f(0 + h)− f(0)

h
=

f(h)

h
=

h2/3

h
=

1

h1/3



110 CHAPTER 2 DIFFERENTIATION

Clearly this expression has no finite
limit as h approaches zero. The num-
bers get large without bound. We do
sometimes say that the vertical line
x = 0 is the tangent line, but as a
line it has no slope (just as the func-
tion has no derivative).

46. lim
x→0−

f(x) = lim
x→0−

0 = 0, and

lim
x→0+

f(x) = lim
x→0+

2x = 0,

so lim
x→0

f(x) = 0.

This equals f(0), so the function is
continuous.

lim
h→0−

f(0 + h)− f(0)

h
= lim

h→0−
0

h
= 0,

lim
h→0+

f(0 + h)− f(0)

h
= lim

h→0−
2h

h
= 2.

These one sided derivatives are not
equal, so the function is not differen-
tiable at x = 0.

Graphically, we can see that the func-
tion is continuous, but has a sharp
corner at x = 0 so is not differentiable
there.
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2
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47. Let f(x) = −1−x2; then for all x, we
have f(x) ≤ x. But at x = −1, we
find f(−1) = −2 and

f 0(−1) = lim
h→0

f(−1 + h)− f(−1)
h

= lim
h→0
−1− (−1 + h)2 − (−2)

h

= lim
h→0

1− (1− 2h+ h2)

h

= lim
h→0

2h− h2

h
= lim

h→0
2−h = 2

So, f 0(x) is not always less than 1.

48. This is not always true. For example,
the function f(x) = −x2 + x satisfies
the hypotheses, but f 0(x) > 1 for all
x < 0, as the following graph shows.

2

0

-2

-8

-6

-10

x

20-2

-4

-12

31-1-3

49. (a) meters per second

(b) items per dollar

50. (a) c0(t) will represent the rate of
change in amount of chemical,
and will be measured in grams
per minute.

(b) p0(x) will represent the rate of
change of mass, and will be mea-
sured in kg per meter.

51. If f 0(t) < 0, the function f(t) is nega-
tively sloped and decreasing, meaning
the stock is losing value with the pass-
ing of time. This may be the basis for
selling the stock if the current trend
is expected to be a long term one.

52. You should buy the stock with value
g(t). It is cheaper because f(t) >
g(t), and growing faster because
f 0(t) < g0(t) (or possibly declining
more slowly).

53. The following sketches are consistent
with the hypotheses of infection rate
rising, peaking, and returning to zero.
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We started with the derivative I 0(t)
(infection rate) and had to think
backwards to construct the function
I(t). One can see in I(t) the slope in-
creasing up to the time of peak infec-
tion rate, thereafter the slope decreas-
ing but not the values. They merely
level off.

0.50
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54. One possible graph of the population
P (t):
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55. Because the curve appears to be
bending upward, the slopes of the
secant lines (based at x = 1 and with
upper endpoint beyond 1) will in-
crease with the upper endpoint. This
has also the effect that any one of
these slopes is greater than the ac-
tual derivative. Therefore

f 0(1) <
f(1.5)− f(1)

.5
<

f(2)− f(1)

1

As to where f(1) fits in this list, it
seems necessary to read the graph and
come up with estimates of f(1) about
4, and f(2) about 7. That would put
the third number in the above list at
about 3, comfortably less than f(1).

56. Note that f(0)−f(−1) is the slope of
the secant line from x = −1 to x = 0
(about −1), and that f(0)−f(−0.5)

0.5
is

the slope of the secant line from x =
−0.5 to x = 0 (about −0.5). f(0) = 3
and f 0(0) = 0.

In increasing order, we have f(0) −
f(−1), f(0)−f(−0.5)

0.5
, f 0(0), and f(0).

57. This is a tricky one. It happens that
for the function f(x) = x2 − x, the
value at x = 1 is zero (f(1) = 0)!
Because of this fact,

(1 + h)2 − (1 + h)

h
=

f(1 + h)− f(1)

h
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and the answer should be:
f(x) = x2 − x and a = 1.

58. lim
h→0

√
4 + h− 2

h
is the derivative of

the function
f(x) =

√
x at x = 4.

59. lim
h→0

¡
1
2+h

¢− ¡1
2

¢
h

would be f 0(a) for

f(x) =
1

x
and a = 2.

60. lim
h→0

(h− 1)2 − 1
h

is the derivative of

the function
f(x) = x2 at x = −1.

61. One possible such graph:
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62. One possible such graph:
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63. We have:

f(t) =

⎧⎪⎨⎪⎩
100 0 < t ≤ 20
100 + 10(t− 20) 20 < t ≤ 80
700 + 8(t− 80) 80 < t <∞

This is another example of a piece-
wise linear function (this one is con-
tinuous), and although not differen-
tiable at the transition times t = 20
or t = 80, elsewhere we have

f 0(t) =

⎧⎪⎨⎪⎩
0 0 < t < 20

10 20 < t < 80

8 80 < t <∞

64. We estimate f 0(1) as follows:

f 0(1) ≈ 9− 13
2− 0 = −2

For every increase of one month
(which corresponds to being one
month younger than your comrades),
the number of players in the English
Premier League decreases by 2. This
suggests that it if being an English
Premier League soccer player is your
goal, that you have a better chance at
it if you are older.

2.3 Computation of

Derivatives:

Power Rule

1. f 0(x) =
d

dx
(x3)− d

dx
(2x) +

d

dx
(1)

= 3x2 − 2 d

dx
(x) + 0

= 3x2 − 2(1)
= 3x2 − 2

2. f 0(x) = 9x8 − 15x4 + 8x− 4

3. f 0(t) =
d

dt
(3t3)− d

dt

³
2
√
t
´

= 3
d

dt
(t3)− 2 d

dt

¡
t1/2
¢

= 3(3t2)− 2
µ
1

2
t−1/2

¶
= 9t2 − 1√

t
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4. f(s) = 5s1/2 − 4s2 + 3, so
f 0(s) =

5

2
s−1/2 − 8s

=
5

2
√
s
− 8s

5. f 0(x) =
d

dx

µ
3

x

¶
− d

dx
(8x) +

d

dx
(1)

= 3
d

dx
(x−1)− 8 d

dx
(x) + 0

= 3(−x−2)− 8(1)
= − 3

x2
− 8

6. f(x) = 2x−4 − x3 + 2, so
f 0(x) = −8x−5 − 3x2

= − 8
x5
− 3x2

7. h0(x) =
d

dx

µ
10√
x

¶
− d

dx
(2x)

= 10
d

dx

¡
x−1/2

¢− 2 d

dx
(x)

= 10

µ
−1
2
x−3/2

¶
− 2(1)

= −5x−3/2 − 2
=
−5
x
√
x
− 2

8. h(x) = 12x− x2 − 3x−1/2, so
h0(x) = 12− 2x+ 3

2
x−3/2

= 12− 2x+ 3

2
√
x3

9. f 0(s) =
d

ds

³
2s

3/2
´
− d

ds

¡
3s−1/3

¢
= 2

d

ds

¡
s3/2

¢− 3 d
ds

¡
s−1/3

¢
= 2

µ
3

2
s1/2

¶
− 3

µ
−1
3
s−4/3

¶
= 3s1/2 + s−4/3

= 3
√
s+

1
3
√
s4

10. f 0(t) = 3πtπ−1 − 2.6t0.3

11. f 0(x) =
d

dx

¡
2 3
√
x
¢
+

d

dx
(3)

= 2
d

dx

¡
x1/3

¢
+ 0

= 2

µ
1

3
x−2/3

¶
=
2

3
x−2/3

=
2

3
3
√
x2

12. f(x) = 4x− 3x2/3, so
f 0(x) = 4− 2x−1/3 = 4− 2

3
√
x

13. f(x) = x(3x2 −√x) = 3x3 − x3/2 so

f 0(x) = 3
d

dx
(x3)− d

dx

¡
x3/2

¢
= 3(3x2)−

µ
3

2
x1/2

¶
= 9x2 − 3

2

√
x

14. f(x) = 3x3 + 3x2 − 4x− 4, so
f 0(x) = 9x2 + 6x− 4

15. f(x) =
3x2 − 3x+ 1

2x

=
3x2

2x
− 3x
2x
+
1

2x

=
3

2
x− 3

2
+
1

2
x−1 so

f 0(x) =
d

dx

µ
3

2
x

¶
− d

dx

µ
3

2

¶
+

d

dx

µ
1

2
x−1
¶

=
3

2

d

dx
(x)− 0 + 1

2

d

dx
(x−1)

=
3

2
(1) +

1

2
(−1x−2)

=
3

2
− 1

2x2

16. f(x) = 4x3/2 − x1/2 + 3x−1/2, so

f 0(x) = 6x1/2 − 1
2
x−1/2 − 3

2
x−3/2

17. f 0(x) =
d

dx
(x4 + 3x2 − 2) = 4x3 + 6x

f 00(x) =
d

dx
(4x3 + 6x) = 12x2 + 6

18. f(x) = x6 −√x = x6 − x1/2 so
df

dx
=

d

dx

¡
x6 − x1/2

¢
= 6x5 − 1

2
x−1/2
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d2f

dx2
=

d

dx

µ
6x5 − 1

2
x−1/2

¶
= 30x4 − 1

2

µ
−1
2
x−3/2

¶
= 30x4 +

1

4
x−3/2

= 30x4 +
1

4x
√
x

19. f(x) = 2x4 − 3x−1/2 so
df

dx
= 8x3 +

3

2
x−3/2

d2f

dx2
= 24x2 − 9

4
x−5/2

20. f(t) = 4t2− 12+ 4

t2
= 4t2− 12+4t−2

so f 0(t) =
d

dt
(4t2 − 12 + 4t−2)

= 8t2 − 0 + 4(−2t−3)
= 8t2 − 8t−3

f 00(t) =
d

dt
(8t− 8t−3)

= 8− 8(−3t−4)
= 8 + 24t−4

f 000(t) =
d

dt
(8+24t−4) = 0+24(−4t−5)

= −96t−5 = −96
t5

21. f 0(x) = 4x3 + 6x
f 00(x) = 12x2 + 6
f 000(x) = 24x
f (4)(x) = 24

22. f 0(x) = 10x9 − 12x3 + 2
f 00(x) = 90x8 − 36x2
f 000(x) = 720x7 − 72x
f (4)(x) = 5040x6 − 72
f (5)(x) = 30240x5

23. f(x) =
x2 − x+ 1√

x
= x3/2 − x1/2 + x−1/2 so

f 0(x) =
d

dx

¡
x3/2 − x1/2 + x−1/2

¢
=
3

2
x1/2 − 1

2
x−1/2 − 1

2
x−3/2

f 00(x) =

d

dx

µ
3

2
x1/2 − 1

2
x−1/2 − 1

2
x−3/2

¶
=
3

4
x−1/2 +

1

4
x−3/2 +

3

4
x−5/2

f 000(x) =
d

dx

µ
3

4
x−1/2 +

1

4
x−3/2 +

3

4
x−5/2

¶
= −3

8
x−3/2− 3

8
x−5/2− 15

8
x−7/2

= −3(x
2 + x+ 5)

8x3
√
x

24. f(t) = t3 + t5/2 − t− t1/2

f 0(t) = 3t2 +
5

2
t3/2 − 1− 1

2
t−1/2

f 00(t) = 6t+
15

4
t1/2 +

1

4
t−3/2

f 000(t) = 6 +
15

8
t−1/2 − 3

8
t−5/2

f (4)(t) = −15
16

t−3/2 +
15

16
t−7/2

25. s(t) = −16t2 + 40t+ 10
v(t) = s0(t) = −32t+ 40
a(t) = v0(t) = s00(t) = −32

26. s(t) = 12t3 − 6t− 1
v(t) = s0(t) = 36t2 − 6
a(t) = s00(t) = 72t

27. s(t) =
√
t+ 2t2 = t1/2 + 2t2

v(t) = s0(t) =
1

2
t−1/2 + 4t

a(t) = v0(t) = s00(t) = −1
4
t−3/2 + 4

28. s(t) = 10− 10t−1
v(t) = s0(t) = 10t−2

a(t) = s00(t) = −20t−3

29. v(t) = −32t+ 40, v(1) = 8, going up.
a(t) = −32, a(1) = −32, speed de-
creasing.

30. v(t) = −32t + 40, v(2) = −24, going
down.
a(t) = −32, a(2) = −32, speed in-
creasing.
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31. v(t) = 20t− 24, v(2) = 16, going up.
a(t) = 20, a(1) = 20, speed increas-
ing.

32. v(t) = 20t − 24, v(1) = −4, going
down.
a(t) = 20, a(1) = 20, speed decreas-
ing.

33. f(x) = 4
√
x− 2x, a = 4

f(4) = 4
√
4− 2(4) = 0

f 0(x) =
d

dx

¡
4x1/2 − 2x¢

= 2x−1/2 − 2 = 2√
x
− 2

f 0(4) = 1− 2 = −1
The equation of the tangent line is
y = −1(x− 4) + 0 or y = −x+ 4.

34. f(2) = 1.
f 0(x) = 2x− 2,
f 0(2) = 2.
Line through (2, 1) with slope 2 is
y = 2(x− 2) + 1.

35. f(x) = x2 − 2, a = 2, f(2) = 2
f 0(x) = 2x
f 0(2) = 4
The equation of the tangent line is
y = 4(x− 2) + 2 or y = 4x− 6.

36. Tangent line to a line is always the
same line, y = 3x+ 4.

37. f(x) = x3 − 3x+ 1
f 0(x) = 3x2 − 3
The tangent line to y = f(x) is hori-
zontal when f 0(x) = 0:
3x2 − 3 = 0
⇐⇒ 3(x2 − 1) = 0
⇐⇒ 3(x+ 1)(x− 1) = 0
⇐⇒ x = −1 or x = 1.

y

10

5

0

-5

-10

x

3210-1-2-3

The graph shows that the first is a rel-
ative maximum, the second is a rela-
tive minimum.

38. Tangent line is horizontal where
f 0(x) = 0.
f 0(x) = 4x3−4x = 4x(x−1)(x+1) =
0 when x = ±1 or 0.

0.50-1

1.2

-1.5

2

1.6

x

1.51-0.5

2.4

The graph shows that the first and
last are relative minimums, while the
middle (x = 0) is a relative maxi-
mum.

39. f(x) = x2/3

f 0(x) =
2

3
x−1/3 =

2

3 3
√
x

The slope of the tangent line to y =
f(x) does not exist where the deriva-
tive is undefined, which is only when
x = 0.
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y

4

3

2

1

0

-1

-2

x

3210-1-2-3

In this case, because the function is
continuous, we might say that the
tangent line is the vertical line x = 0.
The feature at x = 0 is sometimes
known as a cusp.

40. f 0(x) = 1
3
x−2/3 = 1

3
3√
x2
is undefined

at x = 0.

x

1.510.50

1

-0.5

0.5

-1

-0.5

0

-1

-1.5

The graphical significance of this
point is that there is a vertical tan-
gent here.

41. As regards the (a) function, its deriva-
tive would be negative for all nega-
tive x and positive for all positive x.
Since no such function appears among
the pictures, this (a) function has to
be the one whose derivative is absent
from the list. There being no f 000 in
the list, (a) has to be f 00.

This same (a) function is negative for
a certain interval of the form (−a, a),
and the (c) function is decreasing on a
similar type of interval. Thus the (a)
function (f 00) is apparently the deriva-

tive of the (c) function. It follows that
(c) must be f 0.

This leaves (b) for f itself, and our
identifications are consistent in every
respect.

42. Curve (b) is the function f(x), curve
(a) is the derivative f 0(x), and curve
(c) is the second derivative f 00(x).

43. f(x) =
√
x = x1/2

f 0(x) =
1

2
x−1/2

f 00(x) =
1

2

µ
−1
2

¶
x−3/2

f 000(x) =
µ
1

2

¶µ−1
2

¶µ−3
2

¶
x−5/2

f (n)(x) = (−1)n−1Πn

2n
x−(2n−1)/2

in which Πn is the product of the first
n − 1 odd integers (starting from 1
and ending at 2n − 3). Recall that
the product of all the whole numbers
from 1 to n is denoted by n!. If one
were to multiply Πn by product of
the n − 1 even numbers (from 2 to
2n − 2), one would get (2n − 2)! (in
the numerator). Of course, one would
have to do the same to the denomi-
nator, but this product of the new
numbers could be written in the form
2n−1(n − 1)! A final form for an an-
swer could be
f (n)(x) = (−1)n−1 (2n−2)!

22n−1(n−1)!x
(2n−1)/2.

44. f 0(x) = −2x−3
f 00(x) = 6x−4

f 000(x) = −24x−5. The pattern is
f (n)(x) = (−1)n(n+ 1)!x−n−2.

45. f(x) = ax2 + bx+ c⇒ f(0) = c
f 0(x) = 2ax+ b⇒ f 0(0) = b
f 00(x) = 2a⇒ f 00(0) = 2a
Given f 00(0) = 3, we learn 2a = 3, or
a = 3/2. Given f 0(0) = 2 we learn
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2 = b, and given f(0) = −2, we learn
c = −2. In the end
f(x) = ax2 + bx+ c = 3

2
x2 + 2x− 2.

46. f(x) = ax2 + bx+ c. f(0) = 0⇒ c =
0.
f 0(x) = 2ax+ b. f 0(0) = 5⇒ b = 5.
f 00(x) = 2a. f 00(0) = 1⇒ a = 1

2
.

So f(x) = 1
2
x2 + 5x.

47. For y = 1
x
, we have d

dx
= − 1

x2
. Thus,

the slope of the tangent line at x = a
is − 1

a2
.

When a = 1, the slope of the tangent
line at (1, 1) is −1, and the equation
of the tangent line is y = −x + 2.
The tangent line intersects the axes
at (0, 2) and (2, 0). Thus, the area of
the triangle is 1

2
(2)(2) = 2.

When a = 2, the slope of the tangent
line at (2, 1

2
) is −1

4
, and the equation

of the tangent line is y = −1
4
x + 1.

The tangent line intersects the axes
at (0, 1) and (4, 0). Thus, the area of
the triangle is 1

2
(4)(1) = 2.

In general, the equation of the tan-
gent line is y = − ¡ 1

a2

¢
x+ 2

a
. The tan-

gent line intersects the axes at (0, 2
a
)

and (2a, 0). Thus, the area of the tri-
angle is

1

2
(2a)

µ
2

a

¶
= 2

48. For y = 1
x2
= x−2, we have

f 0(x) = −2x−3 = −2/x3.
Thus, the slope of the tangent line at
x = a is −2/x3.
When a = 1, the slope of the tangent
line at (1, 1) is −2, and the equation
of the tangent line is y = −2x + 3.
The tangent line intersects the axes
at (0, 3) and (3

2
, 0). Thus the area of

the triangle is 1
2
(3)(3

2
) = 9

4
.

When a = 2, the slope of the tangent
line at (2, 1

4
) is −1

4
, and the equation

of the tangent line is y = −1
4
x + 3

4
.

The tangent line intersects the axes
at (0, 3

4
) and (3, 0). Thus the area of

the triangle is 1
2
(3
4
)(3) = 9

8
.

Since 9
4
6= 9

8
, we see that the result for

exercise 47 does not hold here.

49. (a) g0(x) = lim
h→0

g(x+ h)− g(x)

h

= lim
h→0

1

h

∙
max

a≤t≤x+h
f(t)− max

a≤t≤x
f(t)

¸
= lim

h→0
1

h
[f(x+ h)− f(x)]

= f 0(x)

(b) g0(x) = lim
h→0

g(x+ h)− g(x)

h

= lim
h→0

1

h

∙
max

a≤t≤x+h
f(t)− max

a≤t≤x
f(t)

¸
= lim

h→0
1

h
[f(a)− f(a)]

= 0

50. (a) g0(x) = lim
h→0

g(x+ h)− g(x)

h

= lim
h→0

1

h

∙
min

a≤t≤x+h
f(t)− min

a≤t≤x
f(t)

¸
= lim

h→0
1

h
[f(a)− f(a)]

= 0

(b) g0(x) = lim
h→0

g(x+ h)− g(x)

h

= lim
h→0

1

h

∙
min

a≤t≤x+h
f(t)− min

a≤t≤x
f(t)

¸
= lim

h→0
1

h
[f(x+ h)− f(x)]

= f 0(x)

51. If d(t) represents the national debt,
then d0(t) represents the rate of
change of the national debt. The
debt itself, by implication, is increas-
ing and therefore d0(t) > 0.

Since the rate of increase has been re-
duced, this implies d00(t) is being re-
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duced. We cannot conclude anything
about the size of d(t).

52. m0(t) = 6t kg per meter. m0(t) repre-
sents the rate the mass is increasing
as t increases. This is the linear den-
sity of the rod.

53. w(b) = cb3/2

w0(b) =
3c

2
b1/2 =

3c
√
b

2
w0(b) > 1 when
3c
√
b

2
> 1,

√
b >

2

3c

b >
4

9c2
.

Since c is constant, when b is large
enough, b will be greater than 4

9c2
. Af-

ter this point, when b increases by 1
unit, the leg width w is increasing by
more than 1 unit, so that leg width is
increasing faster than body length.

This puts a limitation on the size
of land animals since, eventually, the
body will not be long enough to acco-
modate the width of the legs.

54. World Record Times — Men’s Track

Dist. Time Ave f(d)
400 43.18 9.26 9.25
800 101.11 7.91 8.17
1000 131.96 7.58 7.86
1500 206.00 7.28 7.32
2000 284.79 7.02 6.95

Here, distance is in meters, time is in
seconds and hence average in meters
per second.

The function f(d) is quite close to
predicting the average speed of world
record pace.

v0(d) represents the rate of change in
average speed over d meters per me-
ter. v0(d) tells us how much v(d)
would change if d changed to d+ 1.

55. We can approximate f 0(2000) ≈
9039.5−8690.7
2001−1999 = 174.4. This is the rate
of change of the GDP in billions of
dollars per year.

To approximate f 00(2000), we first
estimate f 0(1999) ≈ 9016.8−8347.3

2000−1998 =

334.75 and f 0(1998) ≈ 8690.7−8004.5
1999−1997 =

343.1.

Since these values are decreasing,
f 00(2000) is negative. We estimate
f 00(2000) ≈ 174.4−334.75

2000−1999 = −160.35.
This represents the rate of change of
the rate of change of the GDP over
time. In 2000, the GDP is increasing
by a rate of 343.1 billion dollars per
year, but this increase is decreasing
by a rate of 160.35 billion dollars-per-
year per year.

56. f 0(2000) can be approximated by the
average rate of change from 1995 to
2000. f 0(2000) ≈ 4619−4353

2000−1995 = 53.2.
This is the rate of change of weight of
SUVs over time. In 2000 the weight
of SUVs is increasing by 53.2 pounds
per year.

Similarly approximate f 0(1995) ≈
32.8 and f 0(1990) ≈ 26.8.
The second derivative is definitely
positive. We can approximate
f 00(2000) ≈ 53.2−32.8

2000−1995 = 4.08. This
is the rate of change in the rate of
change of the weight of SUVs. Not
only are SUVs getting heavier at a
rate of 53.2 pounds per year, this rate
is itself increasing at a rate of about
4 pounds-per-year per year.

57. Newton’s Law states that force equals
mass times acceleration. That is, if
F (t) is the driving force at time t,
then m · f 00(t) = m · a(t) = F (t)
in which m is the mass, appropri-
ately unitized. The third derivative of



2.3 COMPUTATION OF DERIVATIVES: THE POWER RULE 119

the distance function is then f 000(t) =
a0(t) = 1

m
F 0(t). It is both the deriva-

tive of the acceleration and directly
proportional to the rate of change in
force. Thus an abrupt change in ac-
celeration or “jerk” is the direct con-
sequence of an abrupt change in force.

58. Q0(x) = 500L1/3x−1/2, and
Q0(40) = 500L1/3√

40
. This is the rate of

change in the daily output as capital
investment changes. As capital in-
vestment increases, the daily output
increases, and Q0(40) tells us how fast
the daily output is increasing when
the capital investment is $40,000.

59—62 Commentary: At this stage,
finding a function whose derivative is
given, is a matter of thinking back-
ward, or of anticipation. When the
derivative is a power, one anticipates
that it could have arisen from differ-
entiating a function which was also a
power, but whose exponent was one
higher. That is, to get to xp, try cxp+1

where c is some constant. After that,
it is a matter of testing and adjusting
the constant c. The answer is never
unique (why?), but anything offered
can always be checked by differentia-
tion.

59. Try f(x) = cx4 for some constant c.
Then f 0(x) = 4cx3 so c must be 1.
One possible answer is x4.

60. Try f(x) = cx5 for some constant c.
Then f 0(x) = 5cx4 so c must be 1.
One possible answer is x5.

61. f 0(x) =
√
x = x1/2

f(x) =
2

3
x3/2 is one possible function.

62. If f 0(x) = x−2, then f(x) = −x−1 is
one possible function.

63. lim
h→0

f(a+ h)− 2f(a) + f(a− h)

h2

= lim
h→0

∙
f(a+ h)− f(a)

h2

− [f(a)− f(a− h)]

h2

¸
= lim

h→0
1

h

∙
f(a+ h)− f(a)

h

−f(a)− f(a− h)

h

¸
= lim

h→0
1

h

∙
lim
h→0

f(a+ h)− f(a)

h

− lim
h→0

f(a)− f(a− h)

h

¸
= lim

h→0
1

h
[f 0(a)− f 0(a− h)]

Now let k = −h in the previous equa-
tion, to get

lim
h→0

f(a+ h)− 2f(a) + f(a− h)

h2

= lim
k→0

1

−k [f
0(a)− f 0(a+ k)]

= lim
k→0

1

k
[f 0(a+ k)− f 0(a)]

= f 00(a)

64. We have that

f(x) =

(
−x2 x < 0

x2 x ≥ 0.

Thus

lim
h→0

f(h)− 2f(0) + f(−h)
h2

= lim
h→0

f(h) + f(−h)
h2

= lim
h→0

h2 + (−h2)
h2

= 0

and therefore exists.

On the other hand, we have

f 0(x) =

(
−2x x < 0

2x x ≥ 0
and
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f 00(x) =

(
−2 x < 0

2 x > 0

but f 00(0) does not exist, since the
limit from the left is −2 but the limit
from the right is 2.

2.4 The Product and

Quotient Rules

1. f(x) = (x2 + 3)(x3 − 3x+ 1)
f 0(x) = d

dx
(x2 + 3) · (x3 − 3x+ 1)

+ (x2 + 3) · d
dx
(x3 − 3x+ 1)

= (2x)(x3 − 3x+ 1)
+ (x2 + 3)(3x2 − 3)

2. f(x) = (x3 − 2x2 + 5)(x4 − 3x2 + 2)
f 0(x) = d

dx
(x3−2x2+5)(x4−3x2+2)

+(x3−2x2+5) d
dx
(x4−3x2+2)

= (3x2 − 4x)(x4 − 3x2 + 2)
+ (x3 − 2x2 + 5)(4x3 − 6x)

3. f(x) = (
√
x+ 3x)

¡
5x2 − 3

x

¢
= (x1/2 + 3x)(5x2 − 3x−1)

f 0(x) =
¡
1
2
x−1/2 + 3

¢
(5x2 − 3x−1)

+ (x1/2 + 3x)(10x+ 3x−2)

4. f(x) = (x3/2 − 4x)(x4 − 3x−2 + 2)
f 0(x) = d

dx
(x3/2 − 4x)(x4 − 3x−2 + 2)

+(x3/2−4x) d
dx
(x4−3x−2+2)

= (3
2
x1/2 − 4)(x4 − 3x−2 + 2)

+ (x3/2 − 4x)(4x3 + 6x−3)
5. f(x) = 3x−2

5x+1

f 0(x) = ((5x+1) ddx (3x−2)−(3x−2) ddx (5x+1))
(5x+1)2

= 3(5x+1)−(3x−2)5
(5x+1)2

= 15x+3−15x+10
(5x+1)2

= 13
(5x+1)2

6. f 0(x) =
(x2−5x+1) d

dx
(x2+2x+5)−(x2+2x+5) d

dx
(x2−5x+1)

(x2−5x+1)2

= (x2−5x+1)(2x+2)−(x2+2x+5)(2x−5)
(x2−5x+1)2

7. f(x) = 3x−6√x
5x2−2 =

3(x−2x1/2)
5x2−2

f 0(x) =

3
((5x2−2) ddx (x−2x1/2)−(x−2x1/2) ddx (5x2−2))

(5x2−2)2

= 3
((5x2−2)(1−x−1/2)−(x−2x1/2)(10x))

(5x2−2)2

= 3
((5x2−2−5x3/2+2x−1/2)−(10x2−20x3/2))

(5x2−2)2

= 3(−5x2+15x3/2+2x−1/2−2)
(5x2−2)2

8. f(x) = 6x−2x−1
x2+x1/2

f 0(x) =
(x2+x1/2) d

dx
(6x−2x−1)−(6x−2x−1) d

dx
(x2+x1/2)

(x2+x1/2)2

=
(x2+x1/2)(6+2x−2)−(6x−2x−1)(2x+ 1

2
x−1/2)

(x2+x1/2)2

9. f(x) = (x+1)(x−2)
x2−5x+1 = x2−x−2

x2−5x+1
f 0(x) =
((x2−5x+1) ddx (x2−x−2)−(x2−x−2) ddx (x2−5x+1))

(x2−5x+1)2

=
((x2−5x+1)(2x−1)−(x2−x−2)(2x−5))

(x2−5x+1)2
= −4x2+6x−11

(x2−5x+1)2

10. f(x) = x2−2x
x2+5x

f 0(x) = (x2+5x) d
dx
(x2−2x)−(x2−2x) d

dx
(x2+5x)

(x2+5x)2

= (x2+5x)(2x−2)−(x2−2x)(2x+5)
(x2+5x)2

11. We do not recommend treating this
one as a quotient, but advise prelim-
inary simplification.
f(x) = x2+3x−2√

x

= x2√
x
+ 3x√

x
− 2√

x

= x3/2 + 3x1/2 − 2x−1/2
f 0(x) = 3

2
x1/2 + 3

2
x−1/2 + x−3/2

12. f(x) = 2x
x2+1

f 0(x) = (x2+1) d
dx
(2x)−(2x) d

dx
(x2+1)

(x2+1)2

= (x2+1)(2)−(2x)(2x)
(x2+1)2

= 2−2x2
(x2+1)2

13. We simplify instead of using the prod-
uct rule.
f(x) = x ( 3

√
x+ 3) = x4/3 + 3x

f 0(x) = 4
3
x1/3 + 3

14. We simplify instead of using the prod-
uct rule.
f(x) = 1

3
x2 + 5x−2

f 0(x) = 2
3
x− 10x−3
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15. f(x) = (x2 − 1)x3+3x2
x2+2

f 0(x) =
d
dx
(x2 − 1) · (x3+3x2

x2+2
)

+ (x2 − 1) · d
dx
(x

3+3x2

x2+2
)

We have

d
dx
(x

3+3x2

x2+2
) =

(x2+2) d
dx
(x3+3x2)−(x3+3x2) d

dx
(x2+2)

(x2+2)2

= (x2+2)·(3x2+6x)−(x3+3x2)·(2x)
(x2+2)2

= 3x4+6x2+6x3+12x−(2x4+6x3)
(x2+2)2

= x4+6x2+12x
(x2+2)2

so f 0(x) =
(2x) · (x3+3x2

x2+2
) + (x2 − 1) · x4+6x2+12x

(x2+2)2

16. f(x) = (x+2)(x−1)(x+1)
x(x+1)

= x2+x−2
x

= x+ 1− 2x−1
So f 0(x) = 1 + 2x−2.

17. d
dx
[f(x)g(x)h(x)]

= d
dx
[(f(x)g(x))h(x)]

= (f(x)g(x))h0(x)+h(x) d
dx
(f(x)g(x))

= (f(x)g(x))h0(x)
+ h(x) (f(x)g0(x) + g(x)f 0(x))

= f 0(x)g(x)h(x)
+ f(x)g0(x)h(x) + f(x)g(x)h0(x)

In the general case of a product of
n functions, the derivative will have
n terms to be added, each term a
product of all but one of the func-
tions multiplied by the derivative of
the missing function.

18. The derivative of g(x)−1 = 1
g(x)

is
g(x) d

dx
(1)−(1) d

dx
g(x)

g(x)2
= − g0(x)

g(x)2

= −g0(x)(g(x))−2
as claimed.

The derivative of f(x)(g(x))−1 is then
f 0(x)(g(x))−1+f(x)(−g0(x)(g(x))−2).

19. f 0(x) =
£
d
dx
(x2/3)

¤
(x2−2)(x3−x+1)

+x2/3
£
d
dx
(x2 − 2)¤ (x3−x+1)

+ x2/3(x2 − 2) d
dx
(x3 − x+ 1)

= 2
3
x−1/3(x2 − 2)(x3 − x+ 1)
+ x2/3(2x)(x3 − x+ 1)
+ x2/3(x2 − 2)(3x2 − 1)

20. f 0(x) = 1(x3 − 2x+ 1)(3− 2/x)
+ (x+ 4)(3x2 − 2)(3− 2/x)
+ (x+ 4)(x3 − 2x+ 1)(2/x2).

21. h(x) = f(x)g(x)
h0(x) = f 0(x)g(x) + f(x)g0(x)

(a) h(1) = f(1)g(1)
= (−2)(1) = −2

h0(1) = f 0(1)g(1) + f(1)g0(1)
= (3)(1) + (−2)(−2) = 7

So the equation of the tangent
line is
y = 7(x− 1)− 2.

(b) h(0) = f(0)g(0)
= (−1)(3) = −3

h0(0) = f 0(0)g(0) + f(0)g0(0)
= (−1)(3) + (−1)(−1)
= −2

So the equation of the tangent
line is
y = −2x− 3.

22. h(x) =
f(x)

g(x)

h0(x) =
f 0(x)g(x)− f(x)g0(x)

(g(x))2

(a) h(1) =
f(1)

g(1)
=
−2
1
= −2

h0(1) =
f 0(1)g(1)− f(1)g0(1)

(g(1))2

=
(3)(1)− (−2)(−2)

(1)2

= −1
So the equation of the tangent
line is
y = −1(x− 1)− 2.

(b) h(0) =
f(0)

g(0)
=
−1
3
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h0(0) =
f 0(0)g(0)− f(0)g0(0)

(g(0))2

=
(−1)(3)− (−1)(−1)

(−1)2
= −4

So the equation of the tangent
line is
y = −4x− 1

3
.

23. h(x) = x2f(x)
h0(x) = 2xf(x) + x2f 0(x)

(a) h(1) = 12f(1) = −2
h0(1) = 2(1)f(1) + 12f 0(1)

= (2)(−2) + 3 = −1
So the equation of the tangent
line is
y = −(x− 1)− 2.

(b) h(0) = 02f(0) = 0
h0(0) = 2(0)f(0) + 02f 0(0) = 0
So the equation of the tangent
line is
y = 0.

24. h(x) =
x2

g(x)

h0(x) =
2xg(x)− x2g0(x)

(g(x))2

(a) h(1) =
12

g(1)
=
1

1
= 1

h0(1) =
2(1)g(1)− 12g0(1)

(g(1))2

=
(2)(1)− (−2)

(1)2
= 4

So the equation of the tangent
line is
y = 4(x− 1) + 1.

(b) h(0) =
02

g(0)
=
0

3
= 0

h0(0) =
2(0)g(0)− 02g0(0)

(g(0))2

=
0

(3)2
= 0

So the equation of the tangent
line is
y = 0.

25. The rate at which the quantity Q
changes is Q0. Since the amount is
said to be “decreasing at a rate of 4%”
we have to ask “4% of what?” The
answer in this type of context is usu-
ally 4% of itself. In other words, Q0 =
−.04Q. As for P , the 3% rate of in-
crease would translate as P 0 = .03P .
By the product rule, with R = PQ,
we have:
R0 = (PQ)0 = P 0Q+ PQ0

= (.03P )Q+ P (−.04Q)
= −(.01)PQ = (−.01)R.

In other words, revenue is decreasing
at a rate of 1%.

26. Revenue will be constant when the
derivative is 0. Substituting Q0 =
−0.04Q and P 0 = aP into the expres-
sion for R0 gives
R0 = −0.04QP + aQP
= (−0.04 + a)QP

This is zero when a = 0.04, so price
must increase by 4%.

27. R0 = Q0P +QP 0

At a certain moment of time (call it
t0) we are given P (t0) = 20 ($/item)
Q(t0) = 20,000 (items)
P 0(t0) = 1.25 ($/item/year)
Q0(t0) = 2,000 (items/year)
⇒ R0(t0) = 2,000(20) + (20,000)1.25

= 65,000 $/year
So revenue is increasing by
$65,000/year at the time t0.

28. We are given P = $14, Q = 12, 000
and Q0 = 1, 200. We want R0 =
$20, 000. Substituting these values
into the expression for R0 (see exer-
cise 25) yields:
20, 000 = 1200 · 14 + 12, 000 · P 0
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Solve to get P 0 = 0.27 dollars per
year.

29. If u(m) =
82.5m− 6.75

m+ .15
then using

the quotient rule,

du

dm
=
(m+ .15)(82.5)− (82.5m− 6.75)1

(m+ .15)2

=
19.125

(m+ .15)2

which is clearly positive. It seems to
be saying that initial ball speed is an
increasing function of the mass of the
bat. Meanwhile,

u0(1) =
19.125

1.152
≈ 14.46

u0(1.2) =
19.125

1.352
≈ 10.49,

which suggests that the rate at which
this speed is increasing is decreasing.

30. u0(M) =
(M + 1.05) d

dM
(86.625− 45M)

(M + 1.05)2

−
d
dM
(M + 1.05)(86.625− 45M)

(M + 1.05)2

=
(−45M − 47.25)− (86.625− 45M)

(M + 1.05)2

=
−133.875
(M + 1.05)2

This quantity is negative. In baseball
terms, as the mass of the baseball in-
creases, the initial velocity decreases.

31. If u(m) =
14.11

m+ .05
=

282.2

20m+ 1
, then

du

dm
=
(20m+ 1) · 0− 282.2(20)

(20m+ 1)2

=
−5644

(20m+ 1)2

This is clearly negative, which means
that impact speed of the ball is a de-
creasing function of the weight of the
club. It appears that the explanation
may have to do with the stated fact
that the speed of the club is inversely
proportional to its mass. Although

the lesson of Example 4.6 was that
a heavier club makes for greater ball
velocity, that was assuming a fixed
club speed, quite a different assump-
tion from this problem.

32. u0(v) =
0.2822

0.217
≈ 1.3. The initial

speed of the ball increases 1.3 times
more than the increase in club speed.

33. f 0(x) = lim
h→0

f(x+ h)− f(x)

h

f 0(0) = lim
h→0

f(h)− f(0)

h

= lim
h→0

hg(h)− 0
h

= lim
h→0

hg(h)

h
= lim

h→0
g(h)

= g(0)
since g is continuous at x = 0.
When g(x) = |x|, g(x) is continuous
but not differentiable at x = 0. We
have

f(x) = x|x| =
(
−x2 x < 0

x2 x ≥ 0. This is
differentiable at x = 0.

34. This does not work. For example,
suppose a = 2 and let g(x) = |x− 2|.
Then

f(x) = x|x−2| =
(
−x2 + 2x x < 2

x2 − 2x x ≥ 2
so

f 0(x) =

(
−2x+ 2 x < 2

2x− 2 x > 2.

The left hand limit as x approaches 2
is −2 while the right hand limit is 2.
Since these are not equal, f(x) is not
differentiable at x = 2.

35. Answers depend on CAS.

36. Answers depend on CAS.

37. For any constant k, the derivative of
sin kx is k cos kx.
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Graph of d
dx
sinx:

1

0

0.5

6

-0.5

-1

-2 2

x

-4 0 4-6

Graph of d
dx
sin 2x:

2

0

1

6

-1

-2

-2 2

x

-4 0 4-6

Graph of d
dx
sin 3x:

3

1

-3

2

0

-2

0-4 2-6 4-2

x
-1

6

38. The derivative of sin kx2 is
2kx cos kx2.

Graph of d
dx
sinx2:

10

0

5

-5

-10

42-6 6-2 0

x

-4

Graph of d
dx
sin 2x2:

20

0

10

-10

-20

0-2-4 42 6

x

-6

Graph of d
dx
sin 3x2:

30

10

-30

20

0

-20

0-6 42 6-4 -2

x
-10

39. Using the quotient rule, we
got a derivative in the form

3x

2
√
3x3 + x2

which could be written

3x

2
p
x2(3x+ 1)

. One could then fac-

tor
√
x2 out of the denominator as |x|

and use
x

|x| =
(
1 x > 0

−1 x < 0
to rewrite the

function as in the problem. CAS an-
swers may vary.
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40. The function f(x) simplifies to
f(x) = 2x, so f 0(x) = 2. CAS an-
swers vary, but should simplify to 2.

41. If F (x) = f(x)g(x) then
F 0(x) = f 0(x)g(x) + f(x)g0(x) and
F 00(x) = f 00(x)g(x) + f 0(x)g0(x)

+ f 0(x)g0(x) + f(x)g00(x)
= f 00(x)g(x) + 2f 0(x)g0(x)
+ f(x)g00(x)

F 000(x) = f 000(x)g(x) + f 00(x)g0(x)
+ 2f 00(x)g0(x) + 2f 0(x)g00(x)
+ f 0(x)g00(x) + f(x)g000(x)

= f 000(x)g(x) + 3f 00(x)g0(x)
+ 3f 0(x)g00(x) + f(x)g000(x)

One can see obvious parallels to the
binomial coefficients as they come
from Pascal’s Triangle:
(a+ b)2 = a2 + 2ab+ b2

(a+ b)3 = a3 + 3a2b+ 3ab2 + b3.
On this basis, one could correctly pre-
dict the pattern of the fourth or any
higher derivative.

42. F (4)(x) =
f (4)g+4f 000g0+6f 00g00+4f 0g000+ fg(4).

43. If g(x) = [f(x)]2 = f(x)f(x), then
g0(x) = f 0(x)f(x) + f(x)f 0(x)

= 2f(x)f 0(x).

44. g(x) = f(x)[f(x)]2, so
g0(x) = f 0(x)[f(x)]2+f(x)(2f(x)f 0(x))

= 3[f(x)]2f 0(x).

The derivative of [f(x)]n is
n[f(x)]n−1f 0(x).

45.

µ
P +

n2a

V 2

¶
(V − nb) = nRT

P +
n2a

V 2
=

nRT

V − nb

P =
nRT

V − nb
− n2a

V 2

From this, we find with some diffi-
culty

P 0(V ) =
−nRT
(V − nb)2

+
2n2a

V 3

P 00(V ) =
2nRT

(V − nb)3
+
6n2a

V 4
.

Obviously, if P 0(V ) = 0, then

2na

V 3
=

RT

(V − nb)2
(= X)

in which X is a temporary name. If
P 00(V ) is also zero, then

0 = P 00(V ) =
2nX

(V − nb)
− 3nX

V

= nX

∙
2

V − nb
− 3

V

¸
=

nX(3nb− V )

V (V − nb)
,

⇒ V = 3nb, so V − nb = 2nb, and

X =
2na

V 3
=

2a

27n2b3
.

RT = (V − nb)2X = 4n2b2X =
8a

27b
,

so T =
8a

27bR
, and since

P =
nRT

V − nb
− n2a

V 2
, we have

P =
8an

27b(2nb)
− n2a

9n2b2
=

a

27b2
.

In summary,

(Tc, Pc, Vc) =

µ
8a

27bR
,

a

27b2
, 3nb

¶
Substitute in the given numbers; in
particular Tc = 647

◦ (Kelvin).

46. lim
x→0

f(x) = 0 and lim
x→∞

f(x) = 1.

Without any activator there is no en-
zyme. With unlimited amount of ac-
tivator, the amount of enzyme ap-
proaches 1.

47. f(x) =
x2.7

1 + x2.7

f 0(x) =
(1 + x2.7) · 2.7x1.7 − 2.7x1.7 · (x2.7)

(1 + x2.7)2

=
2.7x1.7

(1 + x2.7)2

The fact that 0 < f(x) < 1 when
x > 0 suggest to us that f may
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be some kind of concentration ratio
or percentage-of-presence of the al-
losteric enzyme in some system. If so,
the derivative would be interpreted as
the rate of change in the concentra-
tion per unit of activator.

48. lim
x→0

f(x) = 1 and lim
x→∞

f(x) = 0.

Without any inhibitor the amount of
enzyme approaches 1. With unlim-
ited amount of inhibitor, the amount
of enzyme approaches 0.

f 0(x) = − 2.7x1.7

(1 + x2.7)2

For positive x, f 0 is negative. Increase
in the amount of inhibitor leads to a
decrease in the amount of enzyme.

49. d
dx
[x3f(x)] = 3x2 · f(x) + x3f 0(x)

50. Quotient rule gives
x2f 0(x)− 2xf(x)

x4
.

51. Utilizing d
dx
(
√
x) = 1

2
√
x
(which is a

special case of the power rule), we find

d

dx

µ √
x

f(x)

¶
=

f(x) 1
2
√
x
−√xf 0(x)

[f(x)]2

=
f(x)− 2xf 0(x)
2
√
x[f(x)]2

.

52. Product rule gives

1

2
√
x
f(x) +

√
xf 0(x).

2.5 The Chain Rule

1. f(x) = (x3 − 1)2
Using the chain rule:
f 0(x) = 2(x3 − 1)(3x2) = 6x2(x3 − 1)
Using the product rule:
f(x) = (x3 − 1)(x3 − 1)
f 0(x) = (3x2)(x3 − 1) + (x3 − 1)(3x2)

= 2(3x2)(x3 − 1)

= 6x2(x3 − 1)
Using preliminary multiplication:
f(x) = x6 + 2x3 + 1
f 0(x) = 6x5 + 6x2

= 6x2(x3 − 1)

2. f(x) = (x2 + 2x+ 1)(x2 + 2x+ 1)
Using the product rule
f 0(x) =
(2x + 2)(x2 + 2x + 1) + (x2 + 2x +
1)(2x+ 2)
Using the chain rule:
f 0(x) = 2(x2 + 2x+ 1)(2x+ 2)

3. f(x) = (x2 + 1)3

Chain rule:
f 0(x) = 3(x2 + 1)2 · 2x
Using preliminary multiplication:
f(x) = x6 + 3x4 + 3x2 + 1
f 0(x) = 6x5 + 12x3 + 6x

4. f(x) = 16x4 + 32x3 + 24x2 + 8x + 1,
so
f 0(x) = 64x3 + 96x2 + 48x+ 8
Using the chain rule:
f 0(x) = 4(2x+ 1)3(2)

5. f(x) =
√
x2 + 4

f 0(x) =
1

2
√
x2 + 4

· 2x
=

x√
x2 + 4

6. f(x) = (x3 + x− 1)3
f 0(x) = 3(x3 + x− 1)2(3x2 + 1)

7. f(x) = x5
√
x3 + 2

f 0(x) = x5
1

2
√
x3 + 2

3x2+5x4
√
x3 + 2

=
3x7 + 10x4(x3 + 2)

2
√
x3 + 2

=
13x7 + 20x4

2
√
x3 + 2

8. f(x) = (x3 + 2)x5/2

f 0(x) = 3x2 · x5/2 + (x3 + 2)5
2
x3/2
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9. f(x) =
x3

(x2 + 4)2

f 0(x) =
3x2(x2 + 4)2 − 2(x2 + 4)(2x)x3

(x2 + 4)4

=
3x4 + 12x2 − 4x4

(x2 + 4)3

=
x2(12− x2)

(x2 + 4)3

10. f(x) =
x2 + 4

x6

f 0(x) =
x6 · 2x− (x2 + 4)6x5

x12

11. f(x) =
6√

x2 + 4
= 6(x2 + 4)−1/2

f 0(x) = −3(x2 + 4)−3/2 · 2x
=

−6x
(x2 + 4)3/2

12. f(x) = (1/8)(x3 + 4)5

f 0(x) = (5/8)(x3 + 4)4(3x2)

13. f(x) = (
√
x+ 3)4/3

f 0(x) =
4(
√
x+ 3)1/3

3
· 1

2
√
x

=
2(
√
x+ 3)1/3

3
√
x

14. f 0(x) =
1

2
√
x
(x4/3+3)+

√
x

µ
4

3

¶
x1/3

15. f(x) =
³√

x3 + 2 + 2x
´−2

f 0(x) =

−2
³√

x3 + 2 + 2x
´−3 ∙ 3x2

2
√
x3 + 2

+ 2

¸
= − 3x2 + 4

√
x3 + 2

(
√
x3 + 2 + 2x)3 ·√x3 + 2

16. f(x) = (64− 12x2 + x4)1/2

f 0(x) =
1

2
(64− 12x2 + x4)−1/2(−24x+ 4x3)

17. f(x) =
x√

x2 + 1

f 0(x) =

√
x2 + 1− x

³
1

2
√
x2+1

´
2x

x2 + 1

=
1

(x2 + 1)
√
x2 + 1

18. f 0(x) = (x2+1)2(x2−1)2x−(x2−1)22x
(x2+1)2

19. f(x) =

r
x

x2 + 1

f 0(x) =
1

2
p

x
x2+1

· (x
2 + 1)− 2x2
(x2 + 1)2

=
1− x2

2
√
x(x2 + 1)3/2

20. f 0(x) =
µ

1

2
√
(x2+1)(

√
x+1)3

¶
·³

2x(
√
x+ 1)3 + (x2 + 1)3(

√
x+ 1)2 1

2
√
x

´

21. f(x) =
3

vuut
x

s
x4 + 2x 4

r
8

x+ 2

f(x) =

µ
x
h
x4 + 2x

¡
8

x+2

¢1/4i1/2¶1/3
f 0(x) = 1

3

µ
x
h
x4 + 2x

¡
8

x+2

¢1/4i1/2¶−2/3·µh
x4 + 2x

¡
8

x+2

¢1/4i1/2
+

+ x
¡
1
2

¢ h
x4 + 2x

¡
8

x+2

¢1/4i−1/2 ·h
4x3 + 2

¡
8

x+2

¢1/4
+ 2x

¡
1
4

¢ ¡
8

x+2

¢−3/4 ³ −8
(x+2)2

´i´

22. f(x) =
3x2 + 2

p
x3 + 4/x4

(x3 − 4)√x2 + 2
f 0(x) =

d
dx
(3x2+2

√
x3+4/x4)[(x3−4)√x2+2]
(x3−4)2(x2+2)

− (3x2+2
√

x3+4/x4) d
dx
((x3−4)√x2+2)

(x3−4)2(x2+2)

=
6x+ 1√

x3+4/x4
(3x2−16x−5) (x3−4)√x2+2

(x3−4)2(x2+2)

−
(3x2+2

√
x3+4/x4) 3x2

√
x2+2+(x3−4) 1

2
√
x2+2(2x)

(x3−4)2(x2+2)
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23. f(x) =
√
x2 + 16, a = 3, f(3) = 5

f 0(x) =
1

2
√
x2 + 16

(2x) =
x√

x2 + 16

f 0(3) =
3√

32 + 16
=
3

5

So the tangent line is y =
3

5
(x−3)+5

or y =
3

5
x+

16

5
.

24. f(−2) = 3

4

f 0(x) =
−12x
(x2 + 4)2

f 0(−2) = 24

64
=
3

8
The equation of the tangent line is

y =
3

8
(x+ 2) +

3

4
.

25. s(t) =
√
t2 + 8

v(t) = s0(t) =
2t

2
√
t2 + 8

=
t√

t2 + 8
m/s

v(2) =
2√
12
=

1√
3
=

√
3

3
m/s

26. s(t) =
60t√
t2 + 1

v(t) =

√
t2 + 1(60)− 60t 1

2
√
t2+1

2t

t2 + 1
m/s

v(2) =
60
√
5− 240√

5

5
=
12
√
5

5
m/s

27. For higher derivatives, fractional ex-
ponents will be required.

f(x) =
√
2x+ 1 = (2x+ 1)1/2

f 0(x) =
1

2
(2x+1)−1/2·2 = (2x+1)−1/2

f 00(x) = −1
2
(2x+ 1)−3/2(2)

= −(2x+ 1)−3/2

f 000(x) = −
µ
−3
2

¶
(2x+ 1)−5/2 · 2

= 3(2x+ 1)−5/2

f (4)(x) = 3

µ
−5
2

¶
(2x+ 1)−7/2 · 2

= −15(2x+ 1)−7/2
f (n)(x) =
(−1)n+11·3 . . . (2n−3)(2x+1)−(2n−1)/2

28. f(x) =
2

x+ 1

f 0(x) =
−2

(x+ 1)2

f 00(x) =
4

(x+ 1)3

f 000(x) =
−12

(x+ 1)4

f (4)(x) =
48

(x+ 1)5

f (n)(x) =
(−1)n2(n!)
(x+ 1)n+1

29. h0(1) = f 0(g(1))g0(1)
g(1) = 4, so h0(1) = f 0(4)g0(1).

From the table, we have:

f 0(4) ≈ 2− (−2)
5− 3 = 2, and

g0(1) ≈ 6− 2
2− 0) = 2 so

h0(1) ≈ 4.

30. k0(1) = g0(f(1))f 0(1)
f(1) = −2, so k0(1) = g0(−2)f 0(1).
From the table, we have:

f 0(1) ≈ −3− (−1)
2− 0 = −1, and

g0(−2) ≈ 2− 6
−1− (−3) = −2 so

k0(1) ≈ 2.

31. k0(3) = g0(f(3))f 0(3)
f(3) = −2, so k0(3) = g0(−2)f 0(3).
From the table, we have:

f 0(3) ≈ 0− (−3)
4− 2 =

3

2
, and

g0(−2) ≈ 2− 6
−1− (−3) = −2 so

k0(1) ≈ −3.
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32. h0(3) = f 0(g(3))g0(3)
g(3) = 4, so h0(3) = f 0(4)g0(3).

From the table, we have:

f 0(4) ≈ 2− (−2)
5− 3 = 2, and

g0(3) ≈ 6− 2
2− 4) = −2 so

h0(1) ≈ −4.

33. h0(x) = f 0(g(x))g0(x)
h0(1) = f 0(g(1))g0(1)

= f 0(2) · (−2) = −6

34. h0(x) = f 0(g(x))g0(x)
h0(2) = f 0(g(2))g0(2)

= f 0(3) · (4) = −12

35. f(x) = x3+4x−1 is a one-to-one func-
tion with f(0) = −1 and f 0(0) = 4.
Therefore g(−1) = 0 and

g0(−1) = 1

f 0(g(−1)) =
1

f 0(0)
=
1

4
.

36. f(x) = x3 + 2x + 1 is a one-to-
one function with f(−1) = −2 and
f 0(−1) = 5. Therefore g(−2) = −1
and

g0(−2) = 1

f 0(g(−2)) =
1

f 0(−1) =
1

5
.

37. f(x) = x5 + 3x3 + x is a one-to-
one function with f(1) = 5 and
f 0(1) = 5 + 9 + 1 = 15. Therefore
g(5) = 1 and

g0(5) =
1

f 0(g(5))
=

1

f 0(1)
=
1

15
.

38. f(x) = x5+4x−2 is a one-to-one func-
tion with f(0) = −2 and f 0(0) = 4.
Therefore g(−2) = 0 and

g0(−2) = 1

f 0(g(−2)) =
1

f 0(0)
=
1

4
.

39. f(x) =
√
x3 + 2x+ 4 is a one-to-one

function and f(0) = 2 so g(2) = 0.
Meanwhile,

f 0(x) =
1

2
√
x3 + 2x+ 4

(3x2 + 2)

f 0(0) = 1/2

g0(2) =
1

f 0(g(2))
=

1

f 0(0)
= 2.

40. f(x) =
√
x5 + 4x3 + 3x+ 1 is a one-

to-one function and f(1) = 3 so
g(3) = 1. Meanwhile,

f 0(x) =
1

2
(x5+4x3+3x+1)−1/2(5x4+

12x2 + 3)

f 0(1) =
20

6
=
10

3

g0(3) =
1

f 0(g(3))
=

1

f 0(1)
=
3

10
.

41. f(x) = (x2 + 3)2 · 2x
Recognizing the “2x” as the deriva-
tive of x2+3, we guess g(x) = c(x2+
3)3 where c is some constant.
g0(x) = 3c(x2 + 3)2 · 2x
which will be f(x) only if 3c = 1, so
c = 1/3, and

g(x) =
(x2 + 3)3

3
.

42. A good initial guess is (x3 + 4)5/3,
then adjust the constant to get

g(x) =
1

5
(x3 + 4)5/3.

43. f(x) =
x√

x2 + 1
.

Recognizing the “x” as half the
derivative of x2 + 1, and knowing
that differentiation throws the square
root into the denominator, we guess
g(x) = c

√
x2 + 1 where c is some con-

stant and find that

g0(x) =
c

2
√
x2 + 1

(2x)
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will match f(x) if c = 1, so

g(x) =
√
x2 + 1.

44. A good initial guess is (x2+1)−1, then
adjust the constant to get

g(x) = −1
2
(x2 + 1)−1.

45. As a temporary device given any f ,
set g(x) = f(−x). Then by the chain
rule,

g0(x) = f 0(−x)(−1) = −f 0(−x).
In the even case (g = f) this reads
f 0(−x) = −f 0(x) and shows f 0 is odd.
In the odd case (g = −f—and there-
fore g0 = −f 0), this reads −f 0(x) =
−f 0(−x) or f 0(x) = f 0(−x) and shows
f 0 is even.

46. Chain rule gives 2xf 0(x2).

47.
d

dx
f(
√
x) = f 0(

√
x) · d

dx

√
x

= f 0(
√
x) · 1

2
√
x

48. Chain rule gives
1

2
p
4f(x) + 1

· 4f 0(x).

49.
d

dx

µ
1

1 + [f(x)]2

¶
= −

µ
1

1 + [f(x)]2

¶2
· d
dx

¡
1 + [f(x)]2

¢
= − 1

(1 + [f(x)]2)2
· 2f(x) · f 0(x)

50. To say that f(x) is symmetric about
the line x = a is the same as saying
that f(a + x) = f(a − x). Taking
derivatives (using the chain rule), we
have

d

dx
f(a+ x) = f 0(a+ x)

d

dx
f(a− x) = f 0(a− x)(−1)

= −f 0(a− x).

Thus f 0(a+ x) = −f 0(a− x) and the
graph of f 0(x) is symmetric through
the point (a, 0).

51. f 0(x) = b0(a(x))a0(x).
a(2) = 0, b0(0) = −3, a0(2) = 2, so
f 0(2) = −3 · 2 = −6.

52. f 0(x) = a0(b(x))b0(x).
b(0) = 1, a0(1) = 1, and b0(0) = −3,
so f 0(0) = −3.

53. f 0(x) = c0(a(x))a0(x).
a(−1) = 0, c0(0) = −3, a0(−1) = −2,
so f 0(−1) = −3 ·−2 = 6.

54. f 0(x) = b0(c(x))c0(x).
c(1) = −1, b0(−1) = −3, and c0(1) =
0, so f 0(1) = 0.

55. f(x) = (x3 − 3x2 + 2x)1/3
f 0(x) =
1
3
(x3 − 3x2 + 2x)−2/3 · (3x2 − 6x+ 2)
The derivative of f does not exist at
values of x for which
0 = x3 − 3x2 + 2x
= x (x2 − 3x+ 2)
= x (x− 1) (x− 2)

Thus, the derivative of f does not ex-
ist for x = 0, 1, 2. The derivative fails
to exist at these points because the
tangent lines at these points are ver-
tical.

56. We can write f(x) as
f(x)

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−2x− (x− 4)− (x+ 4) x ≤ −4
−2x− (x− 4) + (x+ 4) −4 < x < 0

2x− (x− 4) + (x+ 4) 0 ≤ x < 4

2x+ (x− 4)− (x+ 4) 4 ≤ x
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so

f(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−4x x ≤ −4
−2x+ 8 −4 < x < 0

2x+ 8 0 ≤ x < 4

4x 4 ≤ x
and therefore

f 0(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−4 x < −4
−2 −4 < x < 0

2 0 < x < 4

4 4 < x

but f 0(x) is not defined at x = ±4 or
x = 0. The function f(x) is piecewise
linear and these points correspond
graphically to the places where f(x)
switches from one linear function to
another.

2.6 Derivatives of

Trigonometric

Functions

1. The peaks and valleys of cos(x) (e.g.,
0, π, 2π, etc.) are matched with the
zeros of sin(x), and the decreasing in-
tervals for cos(x) (e.g., [0, π]) corre-
spond to the intervals where sin(x) is
positive, hence where − sin(x) is neg-
ative. These features lend credibility
to the notion that − sin(x) might be
the derivative of cos(x).

2. We use the assumption that x is in ra-
dians in Lemma 6.3. The derivative
of sinx◦ = sin( π

180◦x) is
π
180◦ cos(x

◦).
The factor of π

180◦ comes from apply-
ing the chain rule.

3. f(x) = 4 sinx− x
f 0(x) = 4 cosx− 1

4. f(x) = x2 + 2 cos2 x
f 0(x) = 2x+ 2 cosx(− sinx)

= 2x− 2 cosx sinx

5. f(x) = tan3 x− csc4 x
f 0(x) = 3 tan2 x sec2 x

+ 4 csc3 x cscx cotx
= 3 tan2 x sec2 x+ 4 csc4 x cotx

6. f(x) = 4 secx2 − 3 cotx
f 0(x) = 4(secx2 tanx2)(2x)

− 3(− csc2 x)
= 8x secx2 tanx2 + 3 csc2 x

7. f(x) = x cos 5x2

f 0(x) = (1) cos 5x2+x(− sin 5x2) ·10x
= cos 5x2 − 10x2 sin 5x2

8. f(x) = 4x2 − 3 tanx
f 0(x) = 8x− 3 sec2 x

9. f(x) = sin(tan(x2))
f 0(x) = cos(tan(x2)) · sec2(x2) · 2x

10. f(x) =
p
sin2 x+ 2

f 0(x) =
1

2
(sin2 x+2)−1/2(2 sinx cosx)

11. f(x) =
sin(x2)

x2

f 0(x) =
x2 cos(x2) · 2x− sin(x2) · 2x

x4

=
2x[x2 cos(x2) · 2x− sin(x2)]

x4

=
2[x2 cos(x2)− sin(x2)]

x3

12. f(x) =
x2

csc4 x

f 0(x) =
2x csc4 x− 4x2 csc4 x cotx

csc8 x

=
2x− 4x2 cotx

csc4 x

13. f(t) = sin t sec t = tan t
f 0(t) = sec2 t

14. f(t) =

r
cos t · 1

cos t
= 1

f 0(t) = 0
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15. f(x) =
1

sin(4x)
= csc(4x)

f 0(x) = − csc(4x) cot(4x) · (4)
= −4 csc(4x) cot(4x)
=
−4 cos(4x)
sin2(4x)

16. f(x) = x2 sec2 3x
f 0(x) = 2x sec2 3x

+x22(sec 3x)(sec 3x tan 3x)(3)

17. f(x) = 2 sinx cosx
f 0(x) = 2 cosx ·cosx+2 sinx(− sinx)

= 2 cos2 x− 2 sin2 x
18. f(x) = 4 sin2 x+ 4 cos2 x

= 4(sin2 x+ cos2 x) ≡ 4
f 0(x) ≡ 0

19. f(x) = tan
√
x2 + 1

f 0(x) = (sec2
√
x2 + 1) ·µ

1

2

¶
(x2 + 1)−1/2(2x)

20. f(x) = 4x2 sinx sec 3x
f 0(x) = 4(2x) sinx sec 3x

+ 4x2
d

dx
(sinx sec 3x)

= 8x sinx sec 3x
+4x2(cosx sec 3x+sinx sec 3x tan 3x(3))

21. Answers depend on CAS.

22. Answers depend on CAS.

23. Answers depend on CAS.

24. Answers depend on CAS.

25. f(x) = sin 4x, a =
π

8
,

f
³π
8

´
= sin

π

2
= 1

f 0(x) = 4 cos 4x

f 0
³π
8

´
= 4 cos

π

2
= 0

So the equation of the tangent line is

y − 1 = 0
³
x− π

8

´
or y = 1.

26. f(0) = 0. f 0(x) = 3 sec2 3x, so
f 0(0) = 3. The equation of the tan-
gent line is y = 3x.

27. f(x) = cosx, a =
π

2
,

f
³π
2

´
= cos

π

2
= 0

f 0(x) = − sinx
f 0
³π
2

´
= − sin π

2
= −1

So the equation of the tangent line is

y−0 = −1
³
x− π

2

´
or y = −x+π/2.

28. f
³π
2

´
=

π

2
f 0(x) = sinx+x cosx, so f 0

³π
2

´
= 1.

The equation of the tangent line is
y = x.

29. s(t) = t2 − sin(2t), t0 = 0
v(t) = s0(t) = 2t− 2 cos(2t)
v(0) = 0− 2 cos(0) = 0− 2 = −2 ft/s

30. s(t) = t cos(t2 + π), t0 = 0
v(t) = s0(t) = cos(t2+π)−2t2 sin(t2+
π)
v(0) = cosπ − 0 = −1 ft/s

31. s(t) =
cos t

t
, t0 = π

v(t) = s0(t)

=
−1
t2
cos t+

1

t
(− sin t)

v(π) = −cosπ
π2
− sinπ

π

=
1

π2
− 1

π
(0) =

1

π2
ft/s

32. s(t) = 4 + 3 sin t, t0 = π
v(t) = s0(t) = 3 cos t
v(π) = −3 ft/s

33. f(t) = 4 sin 3t
f 0(t) = 12 cos 3t
The maximum speed of 12 occurs
when the vertical position is zero.
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34. The velocity is 0 when the spring
changes directions at the top and bot-
tom. The velocity is f 0(t) = 12 cos 3t,
which is 0 whenever 3t = k π

2
or t =

k π
6
for any odd integer k. The loca-

tion of the spring at these times is
given (for any odd integer k) by
f
¡
k π
6

¢
= 4 sin

¡
3k π

6

¢
= 4 sin

¡
k π
2

¢
=

±4.

35. Q(t) = 3 sin 2t+ t+ 4
I(t) = dQ

dt
= 6 cos 2t+ 1

At time t = 0, I(0) = 7 amps. At
time t = 1, I(1) = 6 cos 2 + 1 ≈
−1.497 amps.

36. The current is given by I(t) = Q0(t) =
−16 sin 4t − 3. At t = 0, the current
is −3 amps. At t = 1, the current is
I(1) ≈ 9.1088 amps.

37. f(x) = sinx
f 0(x) = cosx
f 00(x) = − sinx
f 000(x) = − cosx
f (4)(x) = sinx = f(x)
⇒ f (75)(x) = (f (72))(3)(x)

= (f (18·4))(3)(x)
= f 000 = − cosx

f (150)(x) = (f (148))(2)(x)
= (f (37·4))(2)(x)
= f 00 = − sinx

38. If f(x) = cos(x), then f (4)(x) = f(x)
f (77)(x) = f (19·4+1)(x)

= f 0(x) = − sinx
f (120)(x) = f (30·4)(x) = f(x) = cosx

39. Since 0 ≤ sin θ ≤ θ, we have
−θ ≤ − sin(θ) ≤ 0 which implies
−θ ≤ sin(−θ) ≤ 0
so for −π

2
≤ θ ≤ 0 we have

θ ≤ sin θ ≤ 0.
We also know that
lim
θ→0−

θ = 0 = lim
θ→0−

0,

so the Squeeze Theorem implies that
lim
θ→0−

sin θ = 0.

40. Since cos2 θ + sin2 θ = 1, we have

cos θ =
p
1− sin2 θ. Then

lim
θ→0

cos θ = lim
θ→0

p
1− sin2 θ = ±1.

Since cos θ is a continuous function
and cos 0 = 1, we conclude that
lim
θ→0

cos θ = 1.

41. If f(x) = cos(x), then
f(x+ h)− f(x)

h

=
cos(x+ h)− cos(x)

h

=
cosx cosh− sinx sinh− cosx

h

= (cosx)
(cosh− 1)

h
−(sinx)

µ
sinh

h

¶
.

Taking the limit according to Lemma
6.1

f 0(x) = lim
h→0

f(x+ h)− f(x)

h

= (cosx) · lim
h→0

cos(h)− 1
h

− (sinx) · lim
h→0

sin(h)

h
= cosx · 0− sinx · 1
= − sinx.

42.
d

dx
cotx =

d

dx

³cosx
sinx

´
=
sinx(− sinx)− cosx cosx

sin2 x

= − 1

sin2 x
= − csc2 x.

d

dx
secx =

d

dx

µ
1

cosx

¶
=
cosx · 0− 1(− sinx)

cos2 x

=
sinx

cosx

µ
1

cosx

¶
= secx tanx.
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d

dx
cscx =

d

dx

µ
1

sinx

¶
=
sinx · 0− 1 cosx

sin2 x

= − 1

sinx

³cosx
sinx

´
= − cscx cotx.

43. (a) lim
x→0

sin 3x

x
= lim

x→0
3 sin 3x

3x

= 3 · lim
x→0

sin(3x)

(3x)

= 3 · 1 = 3

(b) lim
t→0

sin t

4t
=
1

4
lim
t→0

sin t

t

=
1

4
· 1 = 1

4

(c) lim
x→0

cosx− 1
5x

=
1

5
lim
x→0

cosx− 1
x

= 0

(d) Let u = x2: then u → 0 as
x→ 0, and

lim
x→0

sinx2

x2
= lim

u→0
sinu

u
= 1

44. (a) lim
t→0

2t

sin t
= lim

t→0
2
sin t
t

= 2

(b) Let u = x2: then u → 0 as
x→ 0, and

lim
x→0

cosx2 − 1
x2

= lim
u→0

cosu− 1
u

= 0

(c) lim
x→0

sin 6x

sin 5x
= lim

x→0

6 sin 6x
6x

5 sin 5x
5x

=
6

5

(d) lim
x→0

tan 2x

x
= lim

x→0

sin 2x
cos 2x

x

= lim
x→0

2 sin 2x

2x

1

cos 2x
= 2

45. If x 6= 0, then f is continuous by
Theorem 4.2 in Section 1.4, and f
is differentiable by the Quotient rule
(Theorem 4.2 in Section 2.4). Thus,

we only need to check x = 0. To see
that f is continuous at x = 0:

lim
x→0

f(x) = lim
x→0

sinx

x
= 1

(by Lemma 6.3)
Since limx→0 f(x) = f(0), f is contin-
uous at x = 0.

To see that f is differentiable at x =
0:

f 0(a) = lim
x→a

f(x)− f(a)

x− a

f 0(0) = lim
x→0

f(x)− f(0)

x− 0
= lim

x→0
(sinx) /x− 1

x
In the proof of Lemma 6.3, equation
6.8 was derived:

1 >
sinx

x
> cosx

Thus,

0 >
sinx

x
− 1 > cosx− 1

and therefore, if x > 0,

0 >
sinx
x
− 1
x

>
cosx− 1

x

and if x < 0,

0 <
sinx
x
− 1
x

<
cosx− 1

x

By Lemma 6.4,

lim
x→0

cosx− 1
x

= 0

Applying the squeeze theorem to the
previous two inequalities, we obtain

lim
x→0

sinx
x
− 1
x

= 0

and so f 0(0) = 0.
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46. From Exercise 45 and the quotient
rule, we have

f 0(x) =

(
0 x = 0
x cosx−sinx

x2
x 6= 0

Thus, to show that f 0(x) is continous,
we need only show that lim

x→0
f 0(x) =

f 0(0) = 0.

lim
x→0

f 0(x) = lim
x→0

x cosx− sinx
x2

= lim
x→0

x(cosx− sinx
x
)

x2

= lim
x→0

cosx− sinx
x

x
= 0

since lim
x→0

sinx

x
= 1.

47. For x 6= 0,
f 0(x) =

x cosx− sinx
x2

f 00(x) =
x2 (cosx− x sinx− cosx)

x4

− 2x (x cosx− sinx)
x4

=
−x3 sinx− 2x2 cosx+ 2x sinx

x4

=
(2− x2) sinx− 2x cosx

x3
Thus, f 00(x) exists and is continuous
for all x 6= 0. For x = 0,
f 00(0) = lim

x→0
f 0(x)− f 0(0)

x− 0
= lim

x→0

x cosx−sinx
x2

− 0
x− 0

= lim
x→0

x cosx− sinx
x3

Applying L’Hospital’s rule, one ob-
tains

f 00(0) = lim
x→0

cosx− x sinx− cosx
3x2

= −1
3
lim
x→0

sinx

x
= −1

3
Finally, applying L’Hospital’s rule to
f 00(x), one obtains
lim
x→0

f 00(x)

= lim
x→0

(2− x2) sinx− 2x cosx
x3

= lim
x→0

∙
(2− x2) cosx− 2x sinx

3x2

+
2x sinx− 2 cosx

3x2

¸
= lim

x→0
−x2 cosx
3x2

= −1
3
lim
x→0

cosx = −1
3

Thus, limx→0 f 00(x) = f 00(0), and so
f 00 is continuous at x = 0.

48. We first show that f(x) is continu-
ous; the only place we need to check
is x = 0, so we consider lim

x→0
x3 sin( 1

x
).

We know that, for x 6= 0,
−1 ≤ sin(1/x) ≤ 1.

So, for x < 0, we have

−x3 ≥ x3 sin(1/x) ≥ x3,

where the inequalities have changed
direction because x3 < 0 when x < 0.
Likewise, for x > 0, we have

−x3 ≤ x3 sin(1/x) ≤ x3.

Since lim
x→0

x3 = 0 = lim
x→0
−x3,

the Squeeze Theorem implies that
lim
x→0

x3 sin( 1
x
) = 0 and since this equals

f(0), we see that f(x) is continuous
for all x.

We now need to show that f(x) is dif-
ferentiable for all x. Again, we only
need to check for x = 0. For x 6= 0,
f 0(x) = 3x2 sin(1/x)− x cos(1/x).

We need to see that f 0(0) exists. We
have

f 0(0) = lim
x→0

f(x)− f(0)

x− 0
= lim

x→0
x3 sin(1/x)− 0

x
= lim

x→0
x2 sin(1/x)

Using the fact that, for all x 6= 0,
−x2 ≤ x2 sin(1/x) ≤ x2
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and the Squeeze Theorem, we see that
f 0(0) exists and equals 0. Thus f(x)
is differentiable for all x.

Finally, we need to show that f 0(x)
is continuous for all x. For this, we
need to show that lim

x→0
f 0(x) = f 0(0),

i.e., lim
x→0

f 0(x) = 0. We have

lim
x→0

f 0(x) =

lim
x→0
(3x2 sin(1/x)− x cos(1/x))

= lim
x→0

3x2 sin(1/x)− lim
x→0

x cos(1/x).

Using the Squeeze Theorem on each
piece as before shows that lim

x→0
f 0(0) =

0 as desired and so f 0(x) is continuous
for all x, i.e., f(x) is C1.

49. The sketch: y = x and y = sin(x)

y

2

1

0

-1

-2

x

3210-1-2-3

It is not possible visually to either
detect or rule out intersections near
x = 0 (other than zero itself).

We have that f 0(x) = cosx, which is
less than 1 for 0 < x < 1. If sinx ≥ x
for some x in the interval (0, 1), then
there would be a point on the graph
of y = sinx which lies above the line
y = x, but then (since sinx is con-
tinuous) the slope of the tangent line
of sinx would have to be greater than
or equal to 1 at some point in that in-
terval, contradicting f 0(x) < 1. Since
sinx < x for 0 < x < 1, we have
− sinx > −x for 0 < x < 1. Then
− sinx = sin(−x) so sin(−x) > −x

for 0 < x < 1 which is the same as
saying sinx > x for −1 < x < 0.

Since −1 ≤ sinx ≤ 1, the only in-
terval on which y = sinx might in-
tersect y = x is [−1, 1]. We know
they intersect at x = 0 and we just
showed that they do not intersect on
the intervals (−1, 0) and (0, 1). So
the only other points they might in-
tersect are x = ±1, but we know that
sin(±1) 6= ±1, so these graphs inter-
sect only at x = 0.

50. 0 < k ≤ 1 produces one intersec-
tion. For 1 < k < 7.8 (roughly) there
are exactly three intersections. For
k ≈ 7.8 there are 5 intersections. For
k > 7.8 there are 7 or more intersec-
tions.

51. As seen from the graphs, changing the
scale on the x-axis increases the num-
ber of oscillations or periods on the
display. As the number of periods on
the display increase, the graph looks
more and more like a bunch of line
segments. Its inflection points and
concavity are no longer detectable.

2.7 Derivatives of

Exponential and

Logarithmic

Functions

1. f 0(x) = 3x2 · ex+x3 · ex = exx2(x+3)

2. f 0(x) = 2e2x cos 4x+ e2x(− sin 4x)4
3. f 0(x) = 1 + 2x ln 2

4. f 0(x) = 43x + x43x(ln 4)3

5. f 0(x) = 2e4x+1 · 4 = 8e4x+1

6. f(x) = e−x, so f 0(x) = −e−x
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7. f 0(x) = (1/3)x
2 · ln(1/3) · 2x

= −2x ln(3)(1/3)x2

8. f 0(x) = 4−x
2

(ln 4)(−2x)
9. f 0(x) = 4−3x+1 · ln 4 · (−3)

= −6 ln(2)4−3x+1

10. f 0(x) = (1/2)1−x ln(1/2)(−1)

11. f 0(x) =
x · 4e4x − e4x · 1

x2

=
e4x(4x− 1)

x2

12. f 0(x) =
e6x − 6xe6x

e12x
=
1− 6x
e6x

13. f 0(x) =
1

2x
· (2) = 1

x

14. f(x) =
1

2
ln 8 +

1

2
lnx, so

f 0(x) =
1

2x

15. f 0(x) =
3x2 + 3

x3 + 3x
=
3(x2 + 1)

x(x2 + 3)

16. f 0(x) = 3x2 lnx+ x3
1

x

17. f 0(x) =
1

cosx
·− sinx = − tanx

18. f 0(x) = esin 2x(cos 2x)(2)

19. f 0(x) = cos
£
ln(cosx3)

¤ · 1

cosx3
·

(− sinx3) · 3x2
= −3x2 · cos £ln(cosx3)¤ · tanx3

20. f 0(x) =
1

sinx2
(cosx2)(2x)

21. f(x) =

√
lnx2

x
=

√
2 lnx

x
, so

f 0(x) =
x · 1

2
√
2 lnx

· 2
x
−√2 lnx · 1

x2

=
1− 2 lnx
x2
√
2 lnx

=
1− lnx2
x2
√
lnx2

22. f 0(x) =
2xex − ex2x ln 2

22x

23. f 0(x) =
secx tanx+ sec2 x

secx+ tanx
= secx

24. f 0(x) =
1

3
(e2xx3)−2/3(2e2xx3+e2x3x2)

25. f(1) = 3e1 = 3e
f 0(x) = 3ex

f 0(1) = 3e1 = 3e
So the equation of the tangent line is
y − 3e = 3e(x− 1) or y = 3ex.

26. f(1) = 2. f 0(x) = 2ex−1, so f 0(1) = 2.
The equation of the tangent line is
y = 2(x− 1) + 2.

27. f(1) = 3
f 0(x) = 3x ln 3
f 0(1) = 3 · ln 3
So the equation of the tangent line is
y = (3 · ln 3)(x− 1) + 3.

28. f(1) = 2. f 0(x) = 2x ln 2, so f 0(1) =
2 ln 2.
The equation of the tangent line is
y = 2 ln 2(x− 1) + 2.

29. f(1) = 0

f 0(x) = 2x lnx+ x2 · 1
x
= 2x lnx+ x

f 0(1) = 2 · 1 ln 1 + 1 = 2 · 0 + 1 = 1
So the equation of the tangent line is
y = 1(x− 1) + 0 or y = x− 1.

30. f(1) = 0. f 0(x) = 6
x
, so f 0(1) = 6.

The equation of the tangent line is
y = 6(x− 1).

31. v0(t) = 100 · 3t ln 3
v0(t)
v(t)

=
100 · 3t ln 3
100 · 3t = ln 3 ≈ 1.10

So the percentage change is about
110%.

32. v0(t) = 1004t(ln 4)
v0(t)
v(t)

= ln 4 ≈ 1.3863
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The instantaneous percentage rate of
change is 138.6%.

33. v(t) = 100et

v0(t) = 100et

v0(t)
v(t)

=
100et

100et
= 1

So the percentage change is 100%.

34. v0(t) = −100e−t
v0(t)
v(t)

= −1
The instantaneous percentage rate of
change is -100%.

35. p(t) = 200 · 3t
ln(p(t)) = ln(200) + t ln(3)
p0(t)
p(t)

=
d

dt
[ln(p(t)] = ln 3 ≈ 1.099,

so the rate of change of population is
about 110% per unit of time.

36. The population after t days will be
p(t) = 500 · 2t/4. The rate of change
is
p0(t) = 500 · 2t/4(ln 2)(1/4),
so the relative rate of change is
ln 2

4
≈ 0.1733. Therefore the percent-

age rate of change is about 17.3%.

37. f(t) = Aert

APY =
f(1)−A

A
=

Aer −A

A
=

er − 1

(a) APY = e0.05 − 1 ≈
.05127 (5.1%)

(b) APY = e0.1 − 1 ≈
.10517 (10.5%)

(c) APY = e0.2 − 1 ≈
.22140 (22.1%)

(d) APY = eln 2 − 1 = 1 (100%)

(e) APY = e1 − 1 ≈
1.71828 (172%)

38. From exercise 37 we have
APY = f(1)−A

A
= er − 1

(a) To obtain 100% APY , we need
1 = er − 1⇒ er = 2⇒ r = ln 2.

(b) To obtain 10% APY , we need
0.1 = er − 1⇒ er = 1.1⇒
r = ln 1.1 ≈ 0.09531.

39. f(x) = xsinx

ln f(x) = sinx · lnx
f 0(x)
f(x)

=
d

dx
(sinx · lnx)

= cosx · lnx+ sinx
x

f 0(x) = xsinx
µ
x cosx · lnx+ sinx

x

¶
40. f(x) = x4−x

2

ln f(x) = (4− x2) lnx
f 0(x)
f(x)

= −2x lnx+ (4− x2)
1

x

f 0(x) = x4−x
2

µ
−2x lnx+ (4− x2)

1

x

¶
41. f(x) = (sinx)x

ln f(x) = x · ln(sinx)
f 0(x)
f(x)

=
d

dx
(x · ln(sinx))

=
x cosx

sinx
+ ln(sinx)

= x cotx+ ln(sinx)

f 0(x) = (sinx)x · (x cotx+ ln(sinx))
42. f(x) = (x2)4x

ln f(x) = 8x lnx
f 0(x)
f(x)

= 8 lnx+ 8x
1

x
f 0(x) = (x2)4x(8 lnx+ 8)

43. f(x) = xlnx

ln f(x) = lnx · lnx = ln2 x
f 0(x)
f(x)

=
d

dx

¡
ln2 x

¢
=
2 lnx

x

f 0(x) = xlnx
∙
2 lnx

x

¸
= 2x[(lnx)−1] lnx
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44. f(x) = x
√
x

ln f(x) =
√
x lnx

f 0(x)
f(x)

=
1

2
√
x
lnx+

√
x
1

x

f 0(x) = x
√
x

µ
1

2
√
x
lnx+

1√
x

¶
45. f(t) = e−t cos t

v(t) = f 0(t) = −e−t cos t+e−t(− sin t)
= −e−t(cos t+ sin t)

If the velocity is zero, it is because
cos t = − sin t, so
t =

3π

4
,
7π

4
, . . . ,

(3 + 4n)π

4
, . . .

Position when velocity is zero:
f(3π/4) = e−3π/4 cos(3π/4)

= e−3π/4(−1/
√
2) ≈

−.067020
f(7π/4) = e−7π/4 cos(7π/4)

= e−7π/4(1/
√
2) ≈ .002896

Graph of the velocity function:

0

-0.4

-0.2

-0.6

-1

-0.8

32 51 60

t

4

46. f 0(t) = −2e−2t sin 3t+ 3e−2t cos 3t
= e−2t(−2 sin 3t+ 3 cos 3t)

3

2

0

2.5

1.5

0.5

1.50

-0.5

2.52

t

1 3

1

0.5

The velocity of the spring is zero
when it is changing direction at

the top and bottom of the mo-
tion. This occurs when 3 cos 3t =
2 sin 3t or tan 3t = 3/2, i.e., at
t = 1

3
tan−1(3/2) ≈ 0.3276. The po-

sition of the spring at this time is
approximately f(0.3276) ≈ 0.4321.

47. Graphically, the maximum velocity
seems to occur at t = π.

48. Graphically, the maximum velocity
seems to occur at t = 0; the maxi-
mum velocity is not reached on t > 0.

49. f(x) = sinhx =
ex − e−x

2

f 0(x) =
ex + e−x

2
= coshx

g(x) = coshx =
ex + e−x

2

g0(x) =
ex − e−x

2
= sinhx

50. f(x) = tanhx =
sinhx

coshx

f 0(x) =
coshx · coshx− sinhx · sinhx

cosh2 x

=
cosh2 x− sinh2 x

cosh2 x
=

1

cosh2 x

= sech2x =
4

(ex + e−x)2

51. If f(x) = sinhx, then f 0(x) = coshx
and f 00(x) = sinhx = f(x).

If f(x) = coshx, then f 0(x) = sinhx
and f 00(x) = coshx = f(x).

52. (a) f 0(x) = − cosh(cosx) sinx
(b) f 0(x) = sinh(x2)2x− cosh(x2)2x

= 2x(sinh(x2)− cosh(x2))
53. Let (a, ln a) be the point of intersec-

tion of the tangent line and the graph
of y = f(x).
f(x) = lnx

f 0(x) =
1

x

m = f 0(a) =
1

a
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Since the tangent line passes through
the origin, the equation of the tangent
line is

y = mx =
1

a
x

Since (a, ln a) is a point on the tan-
gent line,

ln a =
1

a
a = 1

so a = e.

54. Let (a, ea) be the point of intersection
of the tangent line and the graph of
y = f(x).
f(x) = ex

f 0(x) = ex

m = f 0(a) = ea

Since the tangent line passes through
the origin, the equation of the tangent
line is

y = mx = eax

Since (a, ea) is a point on the tangent
line,

ea = eaa

so a = 1. The slope of the tangent
line in 53 is 1/e while the slope of the
tangent line here is e.

55. f(x) = elnx
2

f 0(x) = elnx
2 · d

dx
lnx2

= elnx
2 · 2

x
= 2x

Much easier if one noticed at the out-
set that f(x) = x2.

56. The derivative does not exist because
the function is not defined for any val-
ues of x! We know −x2 ≤ 0 for all x
and the natural logarithm is not de-
fined for x ≤ 0.

57. f(x) = ln
√
4e3x =

1

2

£
ln
¡
4 · e3x¢¤

=
1

2

£
ln 4 + ln e3x

¤
=
ln 4 + 3x

2

f 0(x) =
3

2

58. f(x) = ln e4x− 2 lnx = 4x− 2 lnx, so
f 0(x) = 4− 2

x
.

59. We approximate lim
h→0

ah−1
h
for a = 3.

h ah−1
h

0.01 1.10466919
0.001 1.09921598
0.0001 1.09867264
0.00001 1.09861832
−0.01 1.09259958
−0.001 1.09800903
−0.0001 1.09855194

The limit seems to be approaching
approximately 1.0986, which is very
close to ln 3 ≈ 1.09861.

60. We approximate lim
h→0

ah−1
h
for a = 1

3
.

h ah−1
h

0.01 −1.09259958
0.001 −1.09800904
0.0001 −1.09855194
0.00001 −1.09860625
−0.01 −1.10466919
−0.001 −1.09921598
−0.0001 −1.09867264
The limit seems to be approaching ap-
proximately −1.0986, which is very
close to ln 1

3
≈ −1.09861228867.

61. x(t) =
6

2e−8t + 1
= 6(2e−8t + 1)−1

x0(t) = −6(2e−8t + 1)−2 · (−16e−8t)
=

96e−8t

(2e−8t + 1)2
Since e−8t > 0 for any t, both numer-
ator and denominator are positive, so
that x0(t) > 0. Then, since x(t) is
an increasing function with a limiting
value of 6 (as t goes to infinity), the
concentration never exceeds (indeed,
never reaches) the value of 6.
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62. x0(t) = −10(9e−10t + 2)−2(−90e−10t)
=

900e−10t

(9e−10t + 2)2
Since e−10t > 0 for all t, x0(t) > 0 for
all t, and x(t) is increasing for all t.
This forces x(t) < lim

t→∞
x(t) = 5.

63. If g(x) = ex, then
g0(x) = ex and g00(x) = ex so
g(0) = g0(0) = g00(0) = e0 = 1.

If f(x) =
a+ bx

1 + cx
, then f(0) = a,

f 0(x) =
b(1 + cx)− (a+ bx)(c)

(1 + cx)2

=
b− ac

(1 + cx)2
= (b−ac)(1+cx)−2

f 0(0) = b− ac
f 00(x) = (b− ac)(−2)(1 + cx)−3c

=
−2c(b− ac)

(1 + cx)3

f 00(0) = −2c(b− ac)
1 = g(0) = f(0) = a so a = 1.
1 = g0(0) = f 0(0) = b− ac = b− c
1 = g00(0) = f 00(0) = −2c(b − ac) =
−2c
so c = −1/2 and b = 1 + c = 1− 1/2
= 1/2
so b = 1/2.
In summary, a = 1, b = 1/2, c =
−1/2 and
g(x) =

1 + (x/2)

1− (x/2) =
2 + x

2− x
.

64. Answers very depending on source.
Linear growth corrseponds to con-
stant slope. In other words the pop-
ulation changes by the same fixed
amount per year. In exponential
growth, the size of the change de-
pends on the size of the population.
The percantage change is the same,
though, from year to year.

65. f(x) = e−x
2/2

f 0(x) = e−x
2/2 · (−2x/2)

= −xe−x2/2
f 00(x) = −

h
x(−xe−x2/2) + 1 · e−x2/2

i
= e−x

2/2(x2 − 1)
This will be zero only when x = ±1.

66. f(x) = e−x
2/8, f 0(x) = (−x/4)e−x2/8,

and
f 00(x) = (−1/4)e−x2/8+(x2/16)e−x2/8

= e−x
2/8((−1/4) + x2/16).

This is zero when x = ±2. The graph
is flatter in the middle, but the tails
are thicker.

67. It helps immensely to leave the name
f as it was in #65, and give a new
name g to the new function here, so
that

g(x) = e−(x−m)
2/2c2 = f(u)

in which u = x−m
c
. Then

g0(x) = f 0(u)
du

dx
=

f 0(u)
c

=
−uf(u)

c

=
−(x−m)e−(x−m)

2/2c2

c2
,

g00(x) =
d

dx

µ
f 0(u)
c

¶
=

f 00(u)du
dx

c

=
f 00(u)
c2

=
(u2 − 1)f(u)

c2

=
((x−m)2 − c2)e−(x−m)

2/2c2

c4
This will be zero only when x = m±c.

68. f(x) = e−(x−m)
2/2c2,

f 0(x) =
−(x−m)

c2
e−(x−m)

2/2c2,

and this is equal to zero when x = m.
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2.8 Implicit

Differentiation and

Inverse

Trigonometric

Functions

1. Explicitly:
4y2 = 8− x2

y2 = 8−x2
4

y = ±
√
8−x2
2

(choose plus to fit (2,1))

For y =

√
8− x2

2
,

y0 =
1

2

(−2x)
2
√
8− x2

=
−x

2
√
8− x2

,

y0(2) = −1/2.

Implicitly:
d

dx
(x2 + 4y2) =

d

dx
(8)

2x+ 8y · y0 = 0
y0 =

−2x
8y

=
−x
4y

at (2, 1) : y0 =
−2
4 · 1 = −

1

2

2. Explicitly:

y =
4
√
x

x3 − x2

y0 =
(x3 − x2) 2√

x
− 4√x(3x2 − 2x)

(x3 − x2)2
.

Implicitly differentiating:

3x2y + x3y0 − 2√
x
= 2xy + x2y0,

and we solve for y0 to get

y0 =
2xy + 2√

x
− 3x2y

x3 − x2
.

Substitute x = 2 into the first expres-
sion, and (x, y) = (2,

√
2) into the sec-

ond to get

y0 = −7
√
2

4

3. Explicitly:

y(1− 3x2) = cosx
y =

cosx

1− 3x2
y0(x) =

(1− 3x2)(− sinx)− cosx(−6x)
(1− 3x2)2

=
− sinx+ 3x2 sinx+ 6x cosx

(1− 3x2)2
y0(0) = 0

Implicitly:
d

dx
(y − 3x2y) = d

dx
(cosx)

y0 − (6xy + 3x2y0) = − sinx
y0(1− 3x2) = 6xy − sinx
y0 =

6xy − sinx
1− 3x2

at (0, 1) : y0 = 0 (again).

4. Explicitly:
y = −x ±

√
x2 − 4. At the point

(−2, 2), the sign is irrelevant, so we
choose y = −x+√x2 − 4.
y0 = −1 + 1

2
√
x2 − 42x

= −1 + x√
x2 − 4.

Implicitly differentiating:
2yy0 + 2y + 2xy0 = 0,
and we solve for y0:

y0 =
−2y
2x+ 2y

Substitute x = −2 into the first ex-
pression, and (x, y) = (−2, 2) into the
second expression to see that y0 is un-
defined. There is a vertical tangent at
this point.

5.
d

dx
(x2y2 + 3y) =

d

dx
(4x)

2xy2 + x22y · y0 + 3y0 = 4
y0(2x2y + 3) = 4− 2xy2

y0 =
4− 2xy2
2x2y + 3

6. 3y3 + 3x(3y2)y0 − 4 = 20yy0

y0 =
3y3 − 4

20y − 9xy2
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7.
d

dx
(
√
xy − 4y2) = d

dx
(12)

1

2
√
xy
· d

dx
(xy)− 8y · y0 = 0

1

2
√
xy
· (xy0 + y)− 8y · y0 = 0

(xy0 + y)− 16y · y0√xy = 0
y0 (x− 16y√xy) = −y
y0 =

−y¡
x− 16y√xy¢ = y

16y
√
xy − x

8. cos(xy)(y + xy0) = 2x

y0 =
2x− y cos(xy)

x cos(xy)

9. x+ 3 = 4xy + y3

1 =
d

dx

¡
4xy + y3

¢
= 4(xy0+y)+3y2y0

1− 4y = y0(3y2 + 4x)

y0 =
1− 4y
3y2 + 4x

10. 3 + 3y2y0 − 4y0 = 20x
y0 =

20x− 3
3y2 − 4

11.
d

dx
(ex

2y − ey) =
d

dx
(x)

ex
2y d

dx
(x2y)− eyy0 = 1

ex
2y(2xy + x2y0)− eyy0 = 1

y0(x2ex
2y − ey) = 1− 2xyex2y

y0 =
1− 2xyex2y
x2ex2y − ey

12. ey + xeyy0 − 3y0 sinx− 3y cosx = 0
y0 =

3y cosx− ey

xey − 3 sinx

13.
d

dx

¡√
x+ y − 4x2¢ = d

dx
(y)

1

2
√
x+ y

· (1 + y0)− 8x = y0

y0
µ

1

2
√
x+ y

− 1
¶
=

−1
2
√
x+ y

+ 8x

y0
µ
1− 2√x+ y

2
√
x+ y

¶
=
16x
√
x+ y − 1

2
√
x+ y

y0 =
16x
√
x+ y − 1

1− 2√x+ y

14. (sin y)y0 − 2yy0 = 0
y0 = 0

15.
d

dx

¡
e4y − ln y¢ = d

dx
(2x)

e4y · 4y0 − 1
y
· y0 = 2

y0
µ
4e4y − 1

y

¶
= 2

y0
µ
4ye4y − 1

y

¶
= 2

y0 =
2y

4ye4y − 1

16. 2xex
2
y + ex

2
y0 − 3y0 = 2x

y0 =
2x− 2xex2y
ex2 − 3

17. Rewrite: x2 = 4y3

Differentiate by x: 2x = 12y2 · y0
y0 =

2x

12y2
=

x

6y2

at (2, 1) : y0 =
2

6 · 12 =
1

3
The equation of the tangent line is

y − 1 = 1

3
(x− 2) or y = 1

3
(x+ 1).

y

1.2

1.6

0.8

x

3

0.4

0 1 2
0

4

18. 2xy2 + x22yy0 = 4, so y0 =
4− 2xy2
2x2y

.

y0 at (1, 2) is −1, and the equation of
the line is y = −1(x− 1) + 2.
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-4

3

y

x

-2

2 4
0

10

4

2

19. This one has y = 0 as part of the
curve(s), but our point of reference is
not on that part, so we can assume
y is not zero, cancel it, and come to
x2y = 4
d

dx
(x2y) =

d

dx
(4)

2xy + x2 · y0 = 0
y0 =

−2y
x

at (2, 1) : y0 = −2/2 = −1.
The equation of the tangent line is
y − 1 = (−1)(x− 2) or y = −x+ 3.

y

2.5

0.5

3

2

0

x

4310

1

1.5

2

20. 3x2y2 + x32yy0 = −3y − 3xy0, so

y0 =
−3y − 3x2y2
2x3y + 3x

.

y0 at (−1,−3) is −6, and the equation
of the line is y = −6(x+ 1)− 3

-2-4

y

0

4

-4

4

-2

x

0

2

2

21. 4y2 = 4x2 − x4

8yy0 = 8x− 4x3
y0 =

x(2− x2)

2y
The slope of the tangent line at
(1,
√
3/2) is

m =
(1)(2− 12)
2
³√

3
2

´
=

1√
3
=

√
3

3
.

The equation of the tangent line is

y −
√
3

2
=

√
3

3
(x− 1)

y =

√
3

3
x+

√
3

2
−
√
3

3

y =

√
3

3
x+

√
3

6
.

y

1.5

-0.5

2

1

x

31.5
0

0.5

210

-1

2.50.5

22. x4 − 8x2 = −8y2
4x3 − 16x = −16yy0
y0 =

4x3 − 16x
−16y =

x3 − 4x
−4y

The slope of the tangent line at
(2,−√2) is
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m =
23 − 4(2)
−4(−√2) = 0.

The equation of the tan-
gent line is y = −√2.

y

0.5

1

0

-1

x

2.5

-0.5

31.50 20.5 1

23.
d

dx
(x2 + y3 − 3y) = d

dx
(4)

2x+ 3y2y0 − 3y0 = 0
y0(3y2 − 3) = −2x
y0 =

2x

3− 3y2

Horizontal tangents:
From the formula, y0 = 0 only when
x = 0. When x = 0, we have
02 + y3 − 3y = 4. Using a CAS to
solve this, we find that

y =
³
2−
√
3
´1/3

+
³
2 +
√
3
´1/3
≈ 2.2

is a horizontal tangent line, tangent to
the curve at the (approximate) point
(0, 2.2).

Vertical tangents: the denominator in
y0 must be zero.
3− 3y2 = 0
y2 = 1 or y = ±1.
When y = 1 we have
x2 + (1)3 − 3(1) = 4
x2 = 6 or x = ±

√
6 ≈ ±2.4.

Also, when y = −1, we have
x2 + (−1)3 − 3(−1) = 4
x2 = 2
x = ±

√
2 ≈ ±1.4.

Thus, we find 4 vertical tangent lines:
x = −

√
6, x = −

√
2, x =

√
2, x =√

6, tangent to the curve (respec-

tively) at the points¡−√6, 1¢, ¡−√2,−1¢, ¡√2,−1¢, and¡√
6, 1
¢
.

24.
d

dx
(xy2 − 2y) = d

dx
(2)

y2 + 2xyy0 − 2y0 = 0
y0 =

y2

2− 2xy
The curve has horizontal tangents
where y0 = 0. There are no points on
the curve where this is true because
y = 0 has no solutions on the original
curve xy2 − 2y = 2. The curve can
have vertical tangents where y0 is un-
defined. The only such point on the
curve is (−1

2
,−2).

25.
d

dx
(x2y2 + 3x− 4y) = d

dx
(5)

x22yy0 + 2xy2 + 3− 4y0 = 0
Differentiate both sides of this with
respect to x:
d

dx
(x22yy0 + 2xy2 + 3− 4y0) = d

dx
(0)

2(2xyy0 + x2(y0)2 + x2yy00)
+ 2(2xyy0 + y2)− 4y00 = 0

2xyy0 + x2(y0)2 + x2yy00

+ 2xyy0 + y2 − 2y00 = 0
4xyy0 + x2(y0)2 + y2 = y00(2− x2y)

y00 =
4xyy0 + x2(y0)2 + y2

2− x2y

26.
d

dx
(x2/3 + y2/3) =

d

dx
(4)

2

3
x−1/3 +

2

3
y−1/3y0 = 0,

multiply by 3
2
and implicitly differen-

tiate again:
−1
3
x−4/3+

−1
3
y−4/3y0y0+y−1/3y00 = 0,

so

y00 =
x−4/3 + y−4/3(y0)2

3y−1/3

27.
d

dx
(y2) =

d

dx
(x3 − 6x+ 4 cos y)

2yy0 = 3x2 − 6− 4 sin y · y0
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Differentiating again with respect to
x: 2[yy00 + (y0)2]
= 6x− 4[sin y · y00 + cos y · (y0)2],
yy00 + (y0)2

= 3x− 2 sin y · y00 − 2 cos y · (y0)2,
y00(y+2 sin y) = 3x− [2 cos y+1](y0)2

y00 =
3x− [2 cos y + 1](y0)2

y + 2 sin y

28.
d

dx
(exy + 2y − 3x) = d

dx
(sin y)

exy(y + xy0) + 2y0 − 3 = cos y · y0,
exy(y+xy0)2+ exy(y0+y0+xy00)+2y00

= − sin y(y0)2 + cos y · y00, and
y00 =

exy(y + xy0)2 + 2exyy0 + sin y(y0)2

cos y − xexy − 2 .

29. f 0(x) =
1

1 + (
√
x)2

· d

dx

√
x

=
1

2(1 + x)
√
x

30. f 0(x) =
1p

1− (x3 + 1)2 (3x
2)

31. f 0(x) =
1

1 + (cosx)2
· d

dx
cosx

=
− sinx

1 + (cosx)2

32. f 0(x) = 4
1

x4
√
x8 − 14x

3

=
16

x
√
x8 − 1

33. f 0(x) = 4 sec(x4) tan(x4) · 4x3

34. f 0(x) =
1

2
(2 + tan−1 x)−1/2

1

1 + x2

35. f 0(x) = etan
−1 x d

dx
tan−1 x

=
etan

−1 x

1 + x2

36. f 0(x) =
cot−1 x · 2x− x2 · −1

1+x2

(cot−1 x)2

=
x (cot−1 x · 2(1 + x2) + x)

(cot−1 x)2(1 + x2)

37. f 0(x) =
(x2 + 1) 1

x2+1
− tan−1 x(2x)

(x2 + 1)2

=
1− 2x tan−1 x
(x2 + 1)2

38. f 0(x) =
1p

1− sin2 x
cosx = 1

Note that sin−1(sinx) = x.

39. x2 + y3 − 2y = 3
y0 =

−2x
3y2 − 2

If x = 1.9, solving for y requires solv-
ing the equation y3 − 2y + 0.61 = 0.
Using the equation of the tangent line
found in Example 8.1, y = −4x + 9,
y(1.9) ≈ 1.4.
If x = 2.1, solving for y requires solv-
ing the equation y3 − 2y + 1.41 = 0.
Using the equation of the tangent line
found in Example 8.1, y = −4x + 9,
y(2.1) ≈ 0.6.

40. Using the tangent line
y = 7

6
(x− 2)− 2,

we find approximate points
(1.9,−2.1167) and (2.1,−1.8833).

41. Both of the points (−3, 0) and (0, 3)
are on the curve:
02 = (−3)3−6(−3)+9 = −27+18+9
32 = (0)3 − 6(0) + 9 = 9
The equation of the line through these
points has slope
0− 3
−3− 0 =

−3
−3 = 1

and y-intercept 3, so y = x+ 3. This
line intersects the curve at:
y2 = x3 − 6x+ 9
(x+ 3)2 = x3 − 6x+ 9
x2 + 6x+ 9 = x3 − 6x+ 9
x3 − 12x− x2 = 0
x(x2 − x− 12) = 0
Therefore, x = 0, −3 or 4 and so the
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third point is (4, 7).

y

5

10

x

2 40

-10

0

-5

-2

42. 32 = (−1)3 − 6(−1) + 4 is true.
2yy0 = 3x2 − 6, so y0 = 3x2−6

2y
, and at

(−1, 3) the slope is −1
2
. The line is

y = −1
2
(x+ 1) + 3.

To find the other point of intersection,
substitute the equation of the line
into the equation for the elliptic curve
and simplify: (−1

2
x+ 5

2
)2 = x3−6x+4

x2 − 10x+ 25 = 4x3 − 24x+ 16
4x3 − x2 − 14x− 9 = 0
We know already that x = −1 is
a solution (actually a double solu-
tion), so we can factor out (x + 1).
Long division yields (x+ 1)2(4x− 9).
The second point has x-coordinate
9/4, which can be substituted into the
equation for the line to get y = 11/8.

43. For the inverse hyperbolic tangent
function,
y = tanh−1 x⇐⇒ x = tanh y
Differentiating both sides of x =
tanh y implicitly, we obtain

1 =
(ey + e−y)2 − (ey − e−y)2

(ey + e−y)2
y0

=

Ã
1− (e

y − e−y)2

(ey + e−y)2

!
y0

=

Ã
1−

∙
ey − e−y

ey + e−y

¸2!
y0

=
¡
1− [tanh y]2¢ y0

=
¡
1− x2

¢
y0

y0 =
1

1− x2
For the inverse hyperbolic cotangent
function,
y = coth−1 x⇐⇒ x = coth y
Differentiating both sides of x =
coth y implicitly, we obtain

1 =
(ey − e−y)2 − (ey + e−y)2

(ey − e−y)2
y0

=

Ã
1− (e

y + e−y)2

(ey − e−y)2

!
y0

=

Ã
1−

∙
ey + e−y

ey − e−y

¸2!
y0

=
¡
1− [coth y]2¢ y0

=
¡
1− x2

¢
y0

y0 =
1

1− x2
The derivative formulas are not iden-
tical because their domains are differ-
ent. The domain of the inverse hyper-
bolic tangent function and its deriva-
tive is |x| < 1, and the domain of the
inverse hyperbolic cotangent function
and its derivative is |x| > 1.

44. Graph of points satisfying (cosx)2 +
(sin y)2 = 1:

y

4

-4

6

2

x
-2

0
-6 2-2

-6

0 64-4

Notice that for a point (x, y) to satisfy
this equation, it must be on a line of
the form y = ±x + kπ for some inte-
ger k. Taking the derivative implicitly
gives

dy

dx
=
sinx cosx

sin y cos y
.
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For any point (x, y) satisfying the
original equation, this derivative is al-
ways ±1, indicating that these line
segments are indeed straight.

45. y = sin−1 x+ cos−1 x
dy

dx
=

1√
1− x2

+
−1√
1− x2

= 0

Therefore, y = c, where c is a con-
stant. To determine c, substitute any
convenient value of x, such as x = 0.
sin−1 x+ cos−1 x = c
sin−1 0 + cos−1 0 = c
0 +

π

2
= c

Thus,

sin−1 x+ cos−1 x =
π

2
.

46. y = sin−1
µ

x√
x2 + 1

¶
dy

dx
=

1r
1−

³
x√
x2+1

´2 · ddx
µ

x√
x2 + 1

¶

=
1q

1− x2

x2+1

·Ã√
x2 + 1− x(1/2)(x2 + 1)−1/2(2x)

x2 + 1

!

=
1− x2

x2+1q
1− x2

x2+1

·
√
x2 + 1

x2 + 1

=

q
1− x2

x2+1√
x2 + 1

·
Ã√

x2 + 1√
x2 + 1

!
=

1

1 + x2
=

d

dx
tan−1 x

Thus, if we set

y = sin−1
µ

x√
x2 + 1

¶
− tan−1 x,

then dy
dx
= 0 so y = c for some con-

stant c. Substitute x = 0 into the
above expression to find c = 0 and so

sin−1
µ

x√
x2 + 1

¶
= tan−1 x.

47.
d

dx
(x2y − 2y) = d

dx
(4)

2xy + x2y0 − 2y0 = 0
y0(x2 − 2) = −2xy
y0 =

−2xy
x2 − 2

The derivative is undefined at x =
±√2, suggesting that there might be
vertical tangent lines at these points.
Similarly, y0 = 0 at y = 0, suggest-
ing that there might be a horizontal
tangent line at this point.

However, plugging x = ±√2 into the
original equation gives 0 = 4, a con-
tradiction which shows that there are
no points on this curve with x value
±√2. Likewise, plugging y = 0 into
the original equation gives 0 = 4.
Again, this is a contradiction which
shows that there are no points on the
graph with y value of 4.

Sketching the graph, we see that there
is a horizontal asymptote at y = 0
and vertical asymptotes at x = ±√2.

y

10

5

0

-5

-10

x

420-2-4

48. For the first type of curve, y+xy0 = 0,
and y0 = −y/x.
For the second type of curve, 2x −
2yy0 = 0, and y0 = x/y.

At any point of intersection, the tan-
gent line to the first curve is perpen-
dicular to the tangent line to the sec-
ond.

49. If y1 = c/x, then y01 = −c/x2 =
−y1/x. If y22 = x2+k, then 2y2(y

0
2) =
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2x and y02 = x/y2. If we are at a par-
ticular point (x0, y0) on both graphs,
this means y1(x0) = y0 = y2(x0) and

y01 · y02 =
µ−y0

x0

¶
·
µ
x0
y0

¶
= −1

This means that the slopes are neg-
ative reciprocals and the curves are
orthogonal.

50. For the first type of curve, 2x+2yy0 =
c, and

y0 =
c− 2x
2y

.

For the second type of curve, 2x +
2yy0 = ky0, and

y0 =
2x

k − 2y .

Multiply the first y0 by x/x and the
second by y/y. This gives

y0 =
cx− 2x2
2xy

=
y2 − x2

2xy
, and

y0 =
2xy

ky − 2y2 =
2xy

x2 − y2
.

These are negative reciprocals of each
other, so the families of curves are or-
thogonal.

51. For the first type of curve, y0 = 3cx2.

For the second type of curve, 2x +
6yy0 = 0, and

y0 =
−2x
6y

=
−x
3y

=
−x
3cx3

=
−1
3cx2

.

These are negative reciprocals of each
other, so the families of curves are or-
thogonal.

52. For the first type of curve, y0 = 4cx3.

For the second type of curve, 2x +
8yy0 = 0, and

y0 =
−2x
8y

=
−x
4y

=
−x
4cx4

=
−1
4cx3

.

These are negative reciprocals of each

other, so the families of curves are or-
thogonal.

53. Conjecture: The family of functions
{y1 = cxn} is orthogonal to the family
of functions {x2 + ny22 = k} whenever
n 6= 0.
If y1 = cxn, then y01 = cnxn−1 =
ny1/x. If ny22 = −x2 + k, then
2ny2(y

0
2) = −2x and y02 = −x/ny2.

If we are at a particular point (x0, y0)
on both graphs, this means y1(x0) =
y0 = y2(x0) and

y01 · y02 =
µ
ny0
x0

¶
·
µ
− x0
ny0

¶
= −1.

This means that the slopes are neg-
ative reciprocals and the curves are
orthogonal.

54. The equation for the circle is
x2 + (y − c)2 = r2.
Differentiating implicitly gives
2x+ 2(y − c) · y0 = 0 so
y0 =

−x
y − c

.

At the point of tangency the deriva-
tives must be the same. Since the
derivative of y = x2 is 2x, we must
solve the equation

2x =
−x
y − c

.

This gives y = c − 1/2, as desired.
Since y = x2, plugging y = c − 1/2
into the equation for the circle gives
c− 1/2 + (c− 1/2− c)2 = r2

c− 1/2 + 1/4 = r2

c = r2 + 1/4.

55. In example 8.6, we are given

θ0(d) =
2(−130)
4 + d2

.

Setting this equal to −3 and solving
for d gives d2 = 82 ⇒ d ≈ 9ft. The
batter can track the ball after they
would have to start swinging (when
the ball is 30 feet away), but not all
the way to home plate.
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56. From Example 8.6, the rate of change
of the angle is

θ0(t) =
1

1 +
h
d(t)
2

i2 · d0(t)2 .

Given a maximum rotational rate of
θ0(t) = −3 (radians/second), the dis-
tance from the plate at which a player
can track the ball can be obtained by
solving the equation

−3 = 2d0(t)

4 + [d(t)]2

for d(t) in terms of d0(t). This leads
to

d(t) =

p−6 · d0(t)− 36
3

,

if d0(t) ≤ −6 which may be reason-
able since the distance is decreasing
as the ball approaches the plate. We
get d(t) = 4 for d0(t) = −30 ft/sec
and d(t) = 9.45 for d0(t) = −140
ft/sec. This would mean a player can
track the ball to within 4 feet from the
plate in slowpitch, but only to within
9.45 feet from the plate in the major
leagues.

57. The viewing angle is given by the for-
mula
θ(x) = tan−1(3/x)− tan−1(1/x).
This will be maximum where the
derivative is zero.

θ0(x) =
1

1 + (3/x)2
· −3
x2
− 1

1 + 1/x2
·

−1
x2

=
1

1 + x2
− 3

9 + x2
.

This is zero when

1

1 + x2
=

3

9 + x2
⇒ x2 = 3⇒ x =

√
3.

58. If A is the viewing angle formed be-
tween the rays from the person’s eye
to the top of the frame and to the
bottom of the frame, and if x is the
distance between the person and the

wall, then since the frame extends

from 6 to 8 feet, we have tanA =
2

x
,

or A = arctan(2/x). Then,
dA

dx
=

1

1 +
¡
2
x

¢2 ·µ−2x2
¶
=
−2

x2 + 4
.

Since the derivative is negative, the
angle is a decreasing function of x.
Strictly speaking, arctan(2/x) is un-
defined at x = 0 but arctan(2/x) →
π/2 as x → 0. The angle A contin-
ues to enlarge (up to a right angle) as
x decreases to zero. In this case the
maximal viewing angle is not a feasi-
ble one.

2.9 The Mean Value

Theorem

1. f(x) = x2 + 1, [−2, 2]
f(−2) = 5 = f(2)
As a polynomial, f(x) is continuous
on [−2, 2], differentiable on (−2, 2),
and the conditions of Rolle’s Theo-
rem hold. There exists c ∈ (−2, 2)
such that f 0(c) = 0. But f 0(c) = 2c,
⇒ c = 0.

y

5

4

3

2

1

0

-1

x

210-1-2

2. f(x) = x2 + 1, [0, 2]
f(x) is continuous on [0, 2] and differ-
entiable on (0, 2), so the conditions of
the Mean Value Theorem hold. We
need to find c so that

f 0(c) =
f(2)− f(0)

2− 0 =
5− 1
2− 0 = 2.
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f 0(x) = 2x = 2 when x = 1, so c = 1.

5

4

3

2

1

0

x

21.510.50

3. f(x) = x3 + x2, on [0, 1], with f(0) =
0, f(1) = 2. As a polynomial f(x) is
continuous on [0, 1] and differentiable
on (0, 1). Since the conditions of the
Mean Value Theorem hold there ex-
ists a number c ∈ (0, 1) such that
f 0(c) =

f(1)− f(0)

1− 0 =
2− 0
1− 0 = 2.

But f 0(c) = 3c2 + 2c.
⇒ 3c2 + 2c = 2,
3c2 + 2c− 2 = 0.
By the quadratic formula

c =
−2±p22 − 4(3)(−2)

2(3)

=
−2±√28

6

=
−2± 2√7

6
=
−1±√7

3⇒ c ≈ −1.22 or c ≈ 0.55
But since −1.22 /∈ (0, 1) we accept
only the other alternative:

c =
−1 +√7

3
≈ 0.55

2

1

1.5

0.5

-0.5

0.4 0.8 10.6

x

0
0

0.2

4. f(x) = x3 + x2, [−1, 1]
f(x) is continuous on [−1, 1] and dif-
ferentiable on (−1, 1) so the condi-
tions of the Mean Value Theorem
hold. We need to find c so that

f 0(c) =
f(1)− f(−1)
1− (−1) =

2− 0
2

= 1.

f 0(x) = 3x2 + 2x = 1 when x = −1
and x = 1

3
, so c = 1

3
.

x

1.5

1

1

-1

0.5

0.5

0-0.5-1

-0.5

2

0

5. f(x) = sinx, [0, π/2],
f(0) = 0, f(π/2) = 1.
As a trig function, f(x) is continu-
ous on [0, π/2] and differentiable on
(0, π/2). The conditions of the Mean
Value Theorem hold, and there exists
c ∈ (0, π/2) such that
f 0(c) =

f
¡
π
2

¢− f(0)
π
2
− 0

=
1− 0
π
2
− 0 =

2

π
.

But f 0(c) = cos(c) and c is to be in
the first quadrant, therefore

c = cos−1
µ
2

π

¶
≈ .88

1.2

0.8

0

1

0.6

0.8 10.2 1.20.6 1.4

x

0.4

0

0.2

0.4
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6. f(x) = sinx, [−π, 0]
f(x) is continuous on [−π, 0] and dif-
ferentiable on (−π, 0). Also,
sin(−π) = 0 = sin(0)
so the conditions of Rolle’s Theorem
hold. We need to find c so that
f 0(c) = 0.
f 0(x) = cosx = 0 on (−π, 0) when
x = −π

2
, so c = −π

2
.

x

0-2 -0.5
0

-1.5

-0.6

-0.8

-2.5

-1

-0.2

-1

-0.4

-3

7. If f 0(x) > 0 for all x then for each
(a, b) with a < b we know there exists
a c ∈ (a, b) such that

f(b)− f(a)

b− a
= f 0(c) > 0.

a < b makes the denominator pos-
itive, and so we must have the nu-
merator also positive, which implies
f(a) < f(b).

8. Let a < b. f is differentiable on (a, b)
and continuous on [a, b], since it is
differentiable for all x. This means
that

f(b)− f(a)

b− a
= f 0(c)

for some c ∈ (a, b). Therefore f(b) −
f(a) = f 0(c)(b − a) is negative, and
f(a) > f(b).

9. f 0(x) = 3x2 + 5. This is positive for
all x, so f(x) is increasing.

10. f 0(x) = 5x4+9x2 ≥ 0 for all x. f 0 = 0
only at x = 0, so f(x) is increasing.

11. f 0(x) = −3x2−3. This is negative for
all x, so f(x) is decreasing.

12. f 0(x) = 4x3+4x is negative for nega-
tive x, and positive for positive x, so
f(x) is neither an increasing function
nor a decreasing function.

13. f 0(x) = ex. This is positive for all x,
so f(x) is increasing.

14. f 0(x) = −e−x < 0 for all x, so f(x) is
a decreasing function.

15. f 0(x) = 1
x

f 0(x) > 0 for x > 0, that is, for all
x in the domain of f . So f(x) is in-
creasing.

16. f 0(x) = 1
x2
· 2x = 2/x is negative for

negative x, and positive for positive x,
so f(x) is neither an increasing func-
tion nor a decreasing function.

17. Let f(x) = x3 + 5x+ 1. As a polyno-
mial, f(x) is continuous and differen-
tiable for all x, with f 0(x) = 3x2 + 5,
which is positive for all x so f(x) is
strictly increasing for all x. Therefore
the equation can have at most one so-
lution.

Since f(x) is negative at x = −1 and
positive at x = 1, and f(x) is con-
tinuous, there must be a solution to
f(x) = 0.

18. The derivative is 3x2 + 4 > 0 for all
x. Therefore the function is strictly
increasing, and so the equation can
have at most one solution. Because
the function is negative at x = 0 and
positive at x = 1, and continuous, we
know the equation has exactly one so-
lution.
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19. Let f(x) = x4 + 3x2 − 2. The deriva-
tive is f 0(x) = 4x3 + 6x. This is neg-
ative for negative x, and positive for
positive x so f(x) is strictly decreas-
ing on (−∞, 0) and strictly increas-
ing on (0,∞). Since f(0) = −2 6=
0, f(x) can have at most one zero
for x < 0 and one zero for x >
0. The function is continuous every-
where and f(−1) = 2 = f(1), there-
fore f(x) = 0 has exactly one solu-
tion between x = −1 and x = 0, ex-
actly one solution between x = 0 and
x = 1, and no other solutions.

20. Let f(x) = x4 + 6x2 − 1. The deriva-
tive is 4x3 + 12x. This is negative
for negative x, and positive for pos-
itive x so f(x) is strictly decreas-
ing on (−∞, 0) and strictly increas-
ing on (0,∞). Since f(0) = −1 6=
0, f(x) can have at most one zero
for x < 0 and one zero for x >
0. The function is continuous every-
where and f(−1) = 6 = f(1), there-
fore f(x) = 0 has exactly one solu-
tion between x = −1 and x = 0, ex-
actly one solution between x = 0 and
x = 1, and no other solutions.

21. f(x) = x3 + ax+ b, a > 0. Any cubic
(actually any odd degree) polynomial
heads in opposite directions (±∞) as
x goes to the oppositely signed infini-
ties, and therefore by the Intermedi-
ate Value Theorem has at least one
root. For the uniqueness, we look at
the derivative, in this case 3x2 + a.
Because a > 0 by assumption, this ex-
pression is strictly positive. The func-
tion is strictly increasing and can have
at most one root.

22. The derivative is 4x3 + 2ax. This is
negative for negative x, and positive

for positive x so f(x) is strictly de-
creasing on (−∞, 0) and strictly in-
creasing on (0,∞), and so can have
at most one zero for x < 0 and one
zero for x > 0. The function is con-
tinuous everywhere, f(0) = −b, and
lim

x→±∞
f(x) = ∞, therefore f(x) has

exactly one solution for x < 0, ex-
actly one solution for x > 0, and no
other solutions.

23. f(x) = x5+ax3+ bx+ c, a > 0, b > 0

Here is another odd degree polyno-
mial (see #21) with at least one root.

f 0(x) = 5x4 + 3ax2 + b is evidently
strictly positive because of our as-
sumptions about a, b. Exactly as in
#21, there can be at most one root.

24. A third degree polynomial p(x) has at
least one zero because
lim

x→−∞
p(x) = − lim

x→∞
p(x) = ±∞,

and it is continuous. Say this zero is
at x = c. Then we know p(x) factors
into p(x) = (x − c)q(x), where q(x)
is a quadratic polynomial. Quadratic
polynomials have at most two zeros,
so p(x) has at most three zeros.

25. The average velocity on [a, b] is
s(b)− s(a)

b− a
By the Mean Value theorem, there ex-
ists a c ∈ (a, b) such that
s0(c) =

s(b)− s(a)

b− a
Thus, the instantaneous velocity at
t = c is equal to the average veloc-
ity between times t = a and t = b.

26. Let f(t) be the distance the first run-
ner has gone after time t and let g(t)
be the distance the second runner has
gone after time t. The functions f(t)
and g(t) will be continuous and dif-
ferentiable. Let h(t) = f(t)− g(t).
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At t = 0, f(0) = 0 and g(0) = 0 so
h(0) = 0. At t = a, f(a) > g(a)
so h(a) > 0. Similarly, at t = b,
f(b) < g(b) so h(b) < 0. Thus, by the
Intermediate Value Theorem, there is
a time t = t0 for t0 ∈ (a, b) where
h(t0) = 0. Rolle’s Theorem then says
that there is a time t = c where
c ∈ (0, t0) such that h0(c) = 0. But
h0(t) = f 0(t)−g0(t), so h0(c) = f 0(c)−
g0(c) = 0 implies that f 0(c) = g0(c),
i.e., at time t = c the runners are go-
ing exactly the same speed.

27. Define h(x) = f(x) − g(x). Then
h is differentiable because f and g
are, and h(a) = h(b) = 0. Apply
Rolle’s theorem to h on [a, b] to con-
clude that there exists c ∈ (a, b) such
that h0(c) = 0. Thus, f 0(c) = g0(c),
and so f and g have parallel tangent
lines at x = c.

28. As in #27, let h(x) = f(x) − g(x).
Again, h is continuous and differen-
tiable on the appropriate intervals be-
cause f and g are. Since f(a)−f(b) =
g(a)− g(b) (by assumption), we have
f(a) = g(a)− g(b) + f(b).
Then
h(a) = f(a)− g(a)

= g(a)− g(b) + f(b)− g(a)
= f(b)− g(b) = h(b).

Rolle’s Theorem then tells us that
there exists c ∈ (a, b) such that
h0(c) = 0 or f 0(c) = g0(c) so that f
and g have parallel tangent lines at
x = c.

29. f(x) = x2

One candidate: g0(x) = kx3

Because we require x2 = g00(x) =
3kx2, we must have 3k = 1, k = 1/3.

Most general solution:
g(x) = g0(x) + c = x3/3 + c
where c is an arbitrary constant.

30. If g0(x) = 9x4, then g(x) = 9
5
x5+c for

any constant c.

31. Although the obvious first candidate
is g0(x) = −1/x,due to the disconnec-
tion of the domain by the discontinu-
ity at x = 0, we could add different
constants, one for negative x, another
for positive x. Thus the most general
solution is:

g(x) =

(
−1/x+ a for x > 0

−1/x+ b for x < 0.

32. If g0(x) =
√
x, then g(x) = 2

3
x3/2 + c

for any constant c.

33. If g0(x) = sinx, then g(x) = − cosx+
c for any constant c.

34. If g0(x) = cosx, then g(x) = sinx+ c
for any constant c.

35. f(x) = 1/x on [−1, 1]. We easily
see that f(1) = 1, f(−1) = −1, and
f 0(x) = −1/x2. If we try to find the
c in the interval (−1, 1) for which

f 0(c) =
f(1)− f(1)

1− (−1) =
1− (−1)
1− (−1) = 1,

the equation would be −1/c2 = 1 or
c2 = −1. There is of course no such c,
and the explanation is that the func-
tion is not defined for x = 0 ∈ (−1, 1)
and so the function is not continuous.

The hypotheses for the Mean Value
Theorem are not fulfilled.

36. f(x) is not continuous on [−1, 2], and
not differentiable on (−1, 2). Can we
find c ∈ (−1, 2) with
f 0(c) =

f(2)− f(−1)
2− (−1)

=
1
4
− 1
3

= −1
4
?

f 0(x) = − 2
x3
= −1

4
when x = 2.

This is not in (−1, 2), so no c makes
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the conclusion of the Mean Value
Theorem true.

37. f(x) = tanx on [0, π], f 0(x) =
sec2(x). We know the tangent has a
massive discontinuity at x = π/2, so
as in #35, we should not be surprised
if the Mean Value Theorem does not
apply. As applied to the interval [0, π]
it would say

sec2(c) = f 0(c) =
f(π)− f(0)

π − 0
=
tanπ − tan 0

π − 0 = 0.

But secant = 1/cosine is never 0 in
the interval (−1, 1), so no such c ex-
ists.

38. f(x) is not differentiable on (−1, 1).
Can we find c with

f 0(c) =
f(1)− f(−1)
1− (−1)

=
1− (−1)

2
= 1?

f 0(x) =
1

3
x−2/3 = 1 when x =

±(1
3
)3/2.

These are both in (−1, 1), so we can
use either of these as c to make the
conclusion of the Mean Value Theo-
rem true.

39. If a derivative g0 is positive at a single
point x = b, then g(x) is an increas-
ing function for x sufficiently near b,
i.e., g(x) > g(b) for x > b but suf-
ficiently near b. In this problem, we
will apply that remark to f 0 at x = 0,
and conclude from f 00(0) > 0 that
f 0(x) > f 0(0) = 0 for x > 0 but suffi-
ciently small. This being true about
the derivative f 0, it tells us that f
itself is increasing on some interval
(0, a) and in particular that f(x) >
f(0) = 0 for 0 < x < a. On the other
side (the negative side) f 0 is negative,
f is decreasing (to zero) and therefore

likewise positive. In summary, x = 0
is a genuine relative minimum.

40. The funtion cosx is continuous and
differentiable everywhere, so for any
u and v we can apply the Mean Value
Theorem to get cosu−cos v

u−v = sin c for
some c between u and v. We know
−1 ≤ sinx ≤ 1, so taking abso-
lute values, we get | cosu−cos v

u−v | ≤ 1, or
| cosu− cos v| ≤ |u− v|.

41. Consider the function g(x) = x −
sin(x), obviously with g(0) = 0 and
g0(x) = 1 − cos(x). If there was
ever a point a > 0 with sin(a) ≥ a,
(g(a) ≤ 0), then by the MVT applied
to g on the interval [0, a], there would
be a point c (0 < c < a) with

g0(c) =
g(a)− g(0)

a− 0 =
g(a)

a
≤ 0.

This would read 1−cos(c) = g0(c) ≤ 0
or cos(c) ≥ 1. The latter condi-
tion is possible only if cos(c) = 1
and sin(c) = 0, in which case c (be-
ing positive) would be at minimum π.
But even in this unlikely case we still
would have sin(a) ≤ 1 < π ≤ c < a.

Since sin a < a for all a > 0, we
have − sin a > −a for all a > 0,
but − sin a = sin(−a) so we have
sin(−a) > −a for all a > 0. This
is the same as saying sin a > a for all
a < 0 so in absolute value we have
| sin a| < |a| for all a 6= 0.
Thus the only possible solution to the
equation sinx = x is x = 0, which we
know to be true.

42. The function tan−1 x is continuous
and differentiable everywhere, so for
any a 6= 0 we can apply the Mean
Value Theorem to get tan

−1 a−tan−1 0
a−0 =

1
1+c2

for some c between 0 and a. Tak-

ing absolute values, we get | tan−1 a
a
| =
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| 1
1+c2

| < 1, so | tan−1 a| < |a| for
a 6= 0. This means that the only so-
lution to tan−1 x = x is x = 0.

43. Since the inverse sine function is in-
creasing on the interval [0, 1) (it has a
positive derivative) we start from the
previously proven inequality sin(x) <
x for 0 < x. If indeed 0 < x < 1, we
can apply the inverse sine and con-
clude
x = sin−1(sin(x)) < sin−1(x).

44. The function tanx is continuous and
differentiable for |x| < π/2, so for
any a 6= 0 in (−π/2, π/2) we can
apply the Mean Value Theorem to
get tana−tan 0

a−0 = sec2 c for some c be-
tween 0 and a. Taking absolute val-
ues, we get | tana

a
| = | sec2 c| > 1, so

| tan a| > |a| for a 6= 0. Of course
tan 0 = 0, so | tan a| ≥ |a| for all
|a| < π/2.

45. f(x) =

(
2x x ≤ 0
2x− 4 x > 0

f(x) = 2x−4 is continuous and differ-
entiable on (0, 2). Also, f(0) = 0 =
f(2). But f 0(x) ≡ 2 on (0, 2), so there
is no c such that f 0(c) = 0. Rolle’s
Theorem requires that f(x) be con-
tinuous on the closed interval, but we
have a jump discontinuity at x = 0,
which is enough to preclude the ap-
plicability of Rolle’s.

46. f(x) = x2 is a counter-example. The
flaw in the proof is that we do not
have f 0(c) = 0.

Ch. 2 Review Exercises

1.
3.4− 2.6
1.5− 0.5 =

0.8

1
= 0.8

2. C (large negative), B (small nega-
tive), A (small positive), andD (large
positive)

3. f 0(2) =
f(2 + h)− f(2)

h

= lim
h→0

(2 + h)2 − 2(2 + h)− (0)
h

= lim
h→0

4 + 4h+ h2 − 4− 2h
h

= lim
h→0

2h+ h2

h
= lim

h→0
2 + h = 2

4. f 0(1) = lim
x→1

f(x)− f(1)

x− 1
= lim

x→1
1 + 1

x
− 2

x− 1
= lim

x→1

−(x−1)
x

x− 1
= lim

x→1
−1
x
= −1

5. f 0(1) = lim
h→0

f(1 + h)− f(1)

h

= lim
h→0

√
1 + h− 1

h

= lim
h→0

√
1 + h− 1

h
·
√
1 + h+ 1√
1 + h+ 1

= lim
h→0

1 + h− 1
h(
√
1 + h+ 1)

= lim
h→0

1√
1 + h+ 1

=
1

2

6. f 0(0) = lim
x→0

f(x)− f(0)

x− 0
= lim

x→0
x3 − 2x

x
= lim

x→0
x2 − 2 = −2

7. f 0(x) = lim
h→0

f(x+ h)− f(x)

h

= lim
h→0

(x+ h)3 + (x+ h)− (x3 + x)

h

= lim
h→0

3x2h+ 3xh2 + h3 + h

h
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= lim
h→0

3x2 + 3xh+ h2 + 1

= 3x2 + 1

8. f 0(x) = lim
h→0

f(x+ h)− f(x)

h

= lim
h→0

3
x+h
− 3

x

h

= lim
h→0

3x−3(x+h)
x(x+h)

h

= lim
h→0

−3h
x(x+h)

h

= lim
h→0

−3
x(x+ h)

=
−3
x2

9. The point is (1, 0). y0 = 4x3−2 so the
slope at x = 1 is 2, and the equation
of the tangent line is y− 0 = 2(x− 1)
or y = 2x− 2.

10. The point is (0, 0). y0 = 2 cos 2x, so
the slope at x = 0 is 2, and the equa-
tion of the tangent line is y = 2x.

11. The point is (0, 3). y0 = 6e2x, so the
slope at x = 0 is 6, and the equation
of the tangent line is y− 3 = 6(x− 0)
or y = 6x+ 3.

12. The point is (0, 1). y0 =
2x

2
√
x2 + 1

,

so the slope at x = 0 is 0, and the
equation of the tangent line is y = 1.

13. Find the slope to y− x2y2 = x− 1 at
(1, 1).
d

dx
(y − x2y2) =

d

dx
(x− 1)

y0 − 2xy2 − x22y · y0 = 1
y0(1− x22y) = 1 + 2xy2

y0 =
1 + 2xy2

1− 2x2y
At (1, 1):

y0 =
1 + 2(1)(1)2

1− 2(1)2(1) =
3

−1 = −3

The equation of the tangent line is
y − 1 = −3(x− 1) or y = −3x+ 4.

14. Implicitly differentiating:
2yy0 + ey + xeyy0 = −1, and
y0 =

−1− ey

2y + xey
.

At (2, 0) the slope is −1, and the
equation of the tangent line is y =
−(x− 2).

15. s(t) = −16t2 + 40t+ 10
v(t) = s0(t) = −32t+ 40
a(t) = v0(t) = −32

16. s(t) = −9.8t2 − 22t+ 6
v(t) = s0(t) = −19.6t− 22
a(t) = s00(t) = −19.6

17. s(t) = 10e−2t sin 4t
v(t) = s0(t)

= 10 (−2e−2t sin 4t+ 4e−2t cos 4t)
a(t) = v0(t)
= 10·(−2) [−2e−2t sin 4t+ e−2t4 cos 4t]
+10(4)·[−2e−2t cos 4t− e−2t4 sin 4t]
= 160e−2t cos 4t− 120e−2t sin 4t

18. s(t) =
√
4t+ 16− 4

v(t) = s0(t) =
4

2
√
4t+ 16

=
2√

4t+ 16
a(t) = s00(t)

=
−2 · 4

2(4t+ 16)3/2
=

−4
(4t+ 16)3/2

19. v(t) = s0(t) = −32t+ 40
v(1) = −32(1) + 40 = 8
The ball is rising.
v(2) = −32(2) + 40 = −24
The ball is falling.

20. v(t) = s0(t) = 20e−2t(2 cos 4t− sin 4t)
v(0) = 40 and v(π) = 40e−2π ≈ 0.075.
The spring is moving in the same di-
rection, much faster at t = 0.

21. (a) msec =
f(2)− f(1)

2− 1
=

√
3−√2
1

≈ .318
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(b) msec =
f(1.5)− f(1)

1.5− 1
=

√
2.5−√2

.5
≈ .334

(c) msec =
f(1.1)− f(1)

1.1− 1
=

√
2.1−√2

.1
≈ .349

Best estimate for the slope of the tan-
gent line: (c) (approximately .349).

22. Point at x = 1 is (1, 7.3891).

(a) msec =
f(2)− f(1)

2− 1
=

e4 − e2

1
≈ 47.2091

(b) msec =
f(1.5)− f(1)

1.5− 1
=

e3 − e2

.5
≈ 25.3928

(c) msec =
f(1.1)− f(1)

1.1− 1
=

e2.2 − e2

.1
≈ 16.3590

Best estimate for the slope of the
tangent line: (c) (approximately
16.3590).

23. f 0(x) = 4x3 − 9x2 + 2

24. f 0(x) =
2

3
x−1/3 − 8x

25. f 0(x) = −3
2
x−3/2 − 10x−3

=
−3
2x
√
x
− 10

x3

26. f 0(x) =
√
x(−3 + 2x)

x

−
(2− 3x+ x2) 1

2
√
x

x

27. f 0(t) = 2t(t+ 2)3 + t2 · 3(t+ 2)2 · 1
= 2t(t+ 2)3 + 3t2(t+ 2)2

= t(t+ 2)2(5t+ 4)

28. f 0(t) = 2t(t3−3t+2)+(t2+1)(3t2−3)

29. g0(x) =
(3x2 − 1) · 1− x(6x)

(3x2 − 1)2
=
3x2 − 1− 6x2
(3x2 − 1)2

= − 3x2 + 1

(3x2 − 1)2

30. g(x) = 3x− 1
x

g0(x) = 3 + 1
x2

31. f 0(x) = 2x sinx+ x2 cosx

32. f 0(x) = 2x cosx2

33. f 0(x) = sec2
√
x · 1

2
√
x

34. f 0(x) =
1

2
√
tanx

sec2 x

35. f 0(t) = csc t · 1 + t · (− csc t · cot t)
= csc t− t csc t cot t

36. f 0(t) = 3 cos 3t cos 4t− 4 sin 3t sin 4t
37. u0(x) = 2e−x

2
(−2x) = −4xe−x2

38. u0(x) = 2(2e−x)(−2e−x) = −8e−2x

39. f 0(x) = 1 · lnx2 + x · 1
x2
· 2x

= lnx2 + 2

40. f 0(x) =
1

2
√
lnx+ 1

· 1
x

41. f 0(x) =
1

2
√
sin 4x

· cos 4x · 4

42. f 0(x) = 2 cos 3x(−3 sin 3x)

43. f 0(x) = 2
µ
x+ 1

x− 1
¶

d

dx

µ
x+ 1

x− 1
¶

= 2

µ
x+ 1

x− 1
¶
(x− 1)− (x+ 1)

(x− 1)2
= 2

µ
x+ 1

x− 1
¶ −2
(x− 1)2

=
−4(x+ 1)
(x− 1)3
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44. f 0(x) =
3

2
√
3x

e
√
3x

45. f 0(t) = e4t · 1 + te4t · 4 = (1 + 4t)e4t

46. f 0(x) =
(x− 1)26− 6x · 2(x− 1)

(x− 1)4

47.
1q

1− (2x)2
· 2

48.
−1p

1− (x2)2 · 2x

49.
1

1 + (cos 2x)2
· (−2 sin 2x)

50.
1

3x2
p
(3x2)2 − 1 · 6x

51. The derivative should look roughly
like:

 

10

5

-5

-10

 

321-1-2-3

52. The derivative should look roughly
like:

10

5

4

-10

x

0

-5

20-2-4

53. f(x) = x4 − 3x3 + 2x2 − x− 1
f 0(x) = 4x3 − 9x2 + 4x− 1
f 00(x) = 12x2 − 18x+ 4

54. f(x) = (x+ 1)1/2

f 0(x) =
1

2
(x+ 1)−1/2

f 00(x) =
−1
4
(x+ 1)−3/2

f 000(x) =
3

8
(x+ 1)−5/2

55. f(x) = xe2x

f 0(x) = 1 · e2x+ xe2x · 2 = e2x+2xe2x

f 00(x) = e2x · 2 + 2 · (e2x + 2xe2x)
= 4e2x + 4xe2x

f 000(x) = 4e2x · 2 + 4 (e2x + 2xe2x)
= 12e2x + 8xe2x

56. f(x) = 4(x+ 1)−1

f 0(x) = −4(x+ 1)−2
f 00(x) = 8(x+ 1)−3

57. f(x) = tanx
f 0(x) = sec2 x
f 00(x) = 2 secx · secx tanx

= 2 sec2 x tanx

58. f(x) = x6 − 3x4 + 2x3 − 7x+ 1
f 0(x) = 6x5 − 12x3 + 6x2 − 7
f 00(x) = 30x4 − 36x2 + 12x
f 000(x) = 120x3 − 72x+ 12
f (4)(x) = 360x2 − 72

59. f(x) = sin 3x
f 0(x) = cos 3x · 3 = 3 cos 3x
f 00(x) = 3(− sin 3x · 3) = −9 sin 3x
f 000(x) = −9 cos 3x · 3 = −27 cos 3x
f (26)(x) = −326 sin 3x

60. For f(x) = e−2x, each derivative mul-
tiplies by a factor of −2, so
f (31)(x) = (−2)31e−2x.

61. R(t) = P (t)Q(t)
R0(t) = Q0(t) · P (t) +Q(t) · P 0(t)
P (0) = 2.4($)
Q(0) = 12 (thousands)
Q0(t) = −1.5 (thousands per year)
P 0(t) = 0.1 ($ per year)
R0(0) = (−1.5) · (2.4) + 12 · (0.1)

= −2.4 (thousand $ per year)
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Revenue is decreasing at a rate of
$2400 per year.

62. The relative rate of change is v0(t)
v(t)
.

v0(t) = 200(3
2
)t ln 3

2
, so the relative

rate of change is ln 3
2
≈ 0.4055, giv-

ing an instantaneous percentage rate
of change of 40.55%.

63. f(t) = 4 cos 2t
v(t) = f 0(t) = 4(− sin 2t) · 2

= −8 sin 2t
(a) The velocity is zero when

v(t) = −8 sin 2t = 0, i.e., when
2t = 0, π, 2π, . . . so when
t = 0, π/2, π, 3π/2, . . .
f(t) = 4 for t = 0, π, 2π, . . .
f(t) = 4 cos 2t = −4 for
t = π/2, 3π/2, . . .
The position of the spring when
the velocity is zero is 4 or −4.

(b) The velocity is a maximum when
v(t) = −8 sin 2t = 8, i.e., when
2t = 3π/2, 7π/2, . . . so
t = 3π/4, 7π/4, . . .
f(t) = 4 cos 2t = 0 for
t = 3π/4, 7π/4, . . .
The position of the spring when
the velocity is at a maximum is
zero.

(c) Velocity is at a minimum when
v(t) = −8 sin 2t = −8, i.e., when
2t = π/2, 5π/2, . . . so
t = π/4, 5π/4, . . .
f(t) = 4 cos 2t = 0 for
t = π/4, 5π/4, . . .
The position of the spring when
the velocity is at a minimum is
also zero.

64. The velocity is given by
f 0(t) = −2e−2t sin 3t+ 3e−2t cos 3t.

65.
d

dx
(x2y − 3y3) = d

dx
(x2 + 1)

2xy + x2y0 − 3 · 3y2 · y0 = 2x
y0(x2 − 9y2) = 2x− 2xy
y0 =

2x(1− y)

x2 − 9y2

66.
d

dx
(sin(xy) + x2) =

d

dx
(x− y)

cos(xy)(y + xy0) + 2x = 1− y0

y0 =
1− 2x− y cos(xy)

x cos(xy) + 1
.

67.
d

dx

µ
y

x+ 1
− 3y

¶
=

d

dx
tanx

(x+ 1)y0 − y · (1)
(x+ 1)2

− 3y0 = sec2 x
y0(x+ 1)− y = (x+ 1)2(3y0 + sec2 x)

y0 =
sec2 x(x+ 1)2 + y

(x+ 1)[1− 3(x+ 1)]

68.
d

dx
(x− 2y2) = d

dx
(3ex/y)

1− 2yy0 = 3ex/y · y − xy0

y2

1− 2yy0 = 3ex/y

y
− 3e

x/yxy0

y2

y0 =
3ex/y

y
− 1

3xex/y

y2
− 2y

69. When x = 0, −3y3 = 1, y = −1
3√3 (call

this a).

From our formula (#65), we find y0 =
0 at this point. To find y00, implicitly
differentiate the first derivative (sec-
ond line in #65):

2(xy0 + y) + (2xy0 + x2y00)
− 9 [2y(y0)2 + y2y00] = 2

At (0, a) with y0 = 0, we find

2a− 9a2y00 = 2,
y00 =

−2 3
√
3

9

³
3
√
3 + 1

´
Below is a sketch of the graph of
x2y − 3y3 = x2 + 1.
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70. Plugging in x = 0 gives −2y = 0 so
y = 0. Plugging (0, 0) into the for-
mula for y0 gives a slope of −1/2. Im-
plicitly differentiating the third line of
the solution to #37 gives

y00(x+ 1) + y0 − y0

= 2(x+ 1)(3y0 + sec2 x)
+ (x+1)2(3y00+2 secx · secx tanx)

Plugging in x = 0, y = 0 and y0 =
−1/2 gives
y00 = 2(−3/2 + sec2(0))

+ (1)2(3y00 + 2 sec2(0) tan(0))
y00 = 1 + 3y00.
So at x = 0, y00 = −1/2.
The graph is:

0-2-4

y

3

2

1

0

-1
x

-2

-3

42

71. y0 = 3x2 − 12x = 3x(x− 4)
(a) y0 = 0 for x = 0 (y = 1), and

x = 4 (y = −31) so there are
horizontal tangent lines at (0, 1)
and (4,−31).

(b) y0 is defined for all x, so there
are no vertical tangent lines.

72. y0 =
2

3
x−1/3

(a) The derivative is never 0, so the
tangent line is never horizontal.

(b) The derivative is undefined at
x = 0 and the tangent is vertical
there.

73.
d

dx
(x2y − 4y) = d

dx
x2

2xy + x2y0 − 4y0 = 2x
y0(x2 − 4) = 2x− 2xy
y0 =

2x− 2xy
x2 − 4 =

2x(1− y)

x2 − 4
(a) y0 = 0 when x = 0 or y = 1.

At y = 1, x2 · 1− 4 · 1 = x2

x2 − 4 = x2

This is impossible, so there is no
x for which y = 1.
At x = 0, 02 · y − 4y = 02, so
y = 0.
Therefore, there is a horizontal
tangent line at (0, 0).

(b) y0 is not defined when x2−4 = 0,
or x = ±2. At x = ±2, 4y−4y =
4 so the function is not defined
at x = ±2. There are no vertical
tangent lines.

74. y0 = 4x3 − 2x = 2x(2x2 − 1).
(a) The derivative is 0 at x = 0 and

x = ±
q

1
2
, and the tangent line

is horizontal at those points.

(b) The tangent line is never verti-
cal.

75. f(x) is continuous and differentiable
for all x, and f 0(x) = 3x2 + 7, which
is positive for all x. By Theorem 9.2,
if the equation f(x) = 0 has two so-
lutions, then f 0(x) = 0 would have
at least one solution, but it has none.
We discussed at length (Section 2.9)
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why every odd degree polynomial has
at least one root, so in this case there
is exactly one root.

76. The derivative is 4x3 + 4x. This is
negative for negative x, and positive
for positive x. f(x) is decreasing on
(−∞, 0) and increasing on (0,∞), so
can have at most one zero for x <
0 and one zero for x > 0. Since
f(−1) = 0, f(1) = 0 and f(0) = −3,
f(x) has exactly one solution for x <
0, exactly one solution for x > 0, and
no other solutions.

77. f(x) = x5 + 2x3 − 1 is a one-to-one
function with f(1) = 2, f 0(1) = 11.
If g is the name of the inverse, then
g(2) = 1 and

g0(2) =
1

f 0(g(2))
=

1

f 0(1)
=
1

11
.

0
y

1

-1

-10

0.5

-1.5

x

2010

1.5

-20

-0.5

0

78. Since e0
3+2·0 = 1, the derivative of the

inverse at x = 1 will be one over the
derivative of ex

3+2x at x = 0. The
derivative of ex

3+2x is (3x2 + 2)ex
3+2x

and this is 2 when x = 0. Therefore
the derivative of the inverse to ex

3+2x

at x = 1 is 1/2.

The graph is the graph of ex
3+2x re-

flected across the line y = x.

y

0

-0.5

x

-1

-1.5

2

-2

1.510.50

79. Let a > 0. We know that f(x) =
cosx − 1 is continuous and differen-
tiable on the interval (0, a). Also
f 0(x) = sinx ≤ 1 for all x. The Mean
Value Theorem implies that there ex-
ists some c in the interval (0, a) such
that f 0(c) = sin c. But

f 0(c) =
cos a− 1− (cos 0− 1)

a− 0
=
cos a− 1

a
.

Since this is equal to sin c and sin c ≤
1 for any c, we get that

cos a− 1 ≤ a

as desired. This works for all posi-
tive a, but since cosx−1 is symmetric
about the y axis, we get

| cosx− 1| ≤ |x|.
They are actually equal at x = 0.

80. This is an example of a Taylor polyno-
mial. Later, Taylor’s theorem will be
used to prove such inequalities. For
now, one can use multiple derivatives
and argue that the rate of the rate of
the rate of change (etc.) increases as
one moves left to right through the
inequalities.

81. To show that g(x) is continuous at
x = a, we need to show that the limit



CHAPTER 2 REVIEW EXERCISES 163

as x approaches a of g(x) exists and
is equal to g(a). But

lim
x→a

g(x) = lim
x→a

f(x)− f(a)

x− a
,

which is the definition of the deriva-
tive of f(x) at x = a. Since f(x)
is differentiable at x = a, we know
this limit exists and is equal to f 0(a),
which, in turn, is equal to g(a). Thus
g(x) is continuous at x = a.

82. We have

f(x)− T (x)

= f(x)− f(a)− f 0(a)(x− a)

=

µ
f(x)− f(a)

x− a
− f 0(a)

¶
(x− a)

Letting e(x) =
f(x)− f(a)

x− a
− f 0(a),

we obtain the desired form. Since
f(x) is differentiable at x = a, we
know that

lim
x→a

f(x)− f(a)

x− a
= f 0(a)

so

lim
x→a

e(x) = lim
x→a

f(x)− f(a)

x− a
− f 0(a)

= 0.

83. f(x) = x2 − 2x on [0, 2]
f(2) = 0 = f(0)

If f 0(c) =
f(2)− f(0)

2− 0 =
0− 0
2

= 0

then 2c− 2 = f 0(c) = 0 so c = 1.

84. f(x) is continuous on [0, 2] and differ-
entiable on (0, 2), so the Mean Value
Theorem applies. We need to find c
so that

f 0(c) =
f(2)− f(0)

2− 0 =
6− 0
2− 0 = 3.

f 0(x) = 3x2 − 1 = 3 when x =
p
4/3,

so c = 2
√
3/3.

85. f(x) = 3x2 − cosx
One trial: go(x) = kx3 − sinx
g0o(x) = 3kx

2 − cosx
Need 3k = 3, k = 1, and the general
solution is
g(x) = go(x) + c = x3 − sinx+ c
for c an arbitrary constant.

86. If g0(x) = x3− e2x, then g(x) must be
1

4
x4 − 1

2
e2x + c,

for any constant c.

87. x = 1 is to be double root of
f(x) = (x3 + 1)− [m(x− 1) + 2]

= (x3 + 1− 2)−m(x− 1)
= (x3 − 1)−m(x− 1)
= (x− 1) [x2 + x+ 1−m]

Let g(x) = x2 + x + 1 − m. Then
x = 1 is a double root of f only
if (x − 1) is a factor of g, in which
case g(1) = 0. Therefore we require
0 = g(1) = 3 − m or m = 3. Now
g(x) = x2 + x− 2 = (x− 1)(x+ 2),
f(x) = (x− 1)g(x) = (x− 1)2(x+ 2)
and x = 1 is a double root.

The line tangent to the curve y =
x3+1 at the point (1, 2) has slope y0 =
3x2 = 3(1) = 3(= m). The equation
of the tangent line is y− 2 = 3(x− 1)
or y = 3x− 1(= m(x− 1) + 2).

88. We are asked to find m so that
x3 + 2x− [m(x− 2) + 12]
= x3 + (2−m)x+ (2m− 12)
has a double root. A cubic with a
double root factors as
(x− a)2(x− b)
= x3− (2a+ b)x2+(2ab+ a2)x− a2b.
Equating like coefficients gives a sys-
tem of equations
2a+ b = 0,
2ab+ a2 = 2−m, and
−a2b = 2m− 12.
The first equation gives b = −2a.
Substituting this into the second
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equation gives m = 2 + 3a2. Sub-
stituting these results into the third
equation gives a cubic polynomial in
a with zeros a = −1 and a = 2.
This gives two solutions: m = 5 and
m = 14.

f 0(x) = 3x2 + 2, so f 0(2) = 14. The
tangent line at (2, 12) is y = 14(x −
2) + 12.

The second solution corresponds to
the tangent line to f(x) at x = −1,
which happens to pass through the
point (2, 12).


