Ministry of Higher Education Colleges of Applied Sciences Final Exam Academic Year 2008/2009

Course Number/Name: SFDV3004 Data Structures 2 Date: 25th March 2009 Time: 02:00PM

Student's Name											
Group No	Student ID:										
Iı	ıstructio	ns for stu	dents	S							
This exam lasts for 1 hour	and is wor	th 20% to	your fi	inal mark	for SFD	V3004					
Please, place all mobile pho											
DO NOT TALK during th						r					
Hand the exam paper back	to your inv	vigilator at t	he end	of the ex	am						
For Lecturer use onl	·										
Question	Mark allotted		Mark s	ark scored							
Section A Multiple choice (10 x 1)	10					A-Total					
Section B Short Answer (4x2.5)	10	1 2		3	4	B-Total					
Total	20				Test Te	otal					
Examiner:			Sig	nature .		·					
Checked by:		• • • • • •	Sign	nature	• • • • • •						

MULTIPLE CHOICE ANSWER SHEET:

		a	b	c	d
Please mark your answers on the matrix below.	01				
Example If you think the correct answer for Q1 is "b"	ŲI	O	•	O	O
If you change your mind to "d"	Q1	О	X	О	•

	a	b	c	d		a	b	c	d		a	b	c	d		a	b	c	d
Q1	О	О	О	О	Q2	О	О	О	О	Q3	О	О	О	О	Q4	О	О	О	О
Q5	О	О	О	О	Q6	О	О	О	О	Q7	О	О	О	О	Q8	О	О	О	О
Q9	О	О	О	О	Q10	О	О	О	О										

Section A: Multiple Choice Questions

This section should be answered using the multiple choice questions answer sheet provided in the previous page.

- 1. To sort an array of strings it is better to use:
 - a. Radix sort
 - b. Ouick sort
 - c. Insertion sort
 - d. Counting sort
- 2. To sort the numbers 329, 457, 657, 839 using Radix sort, the number of passes or iterations required is
 - a. 0
 - b. 1
 - c. 2
 - d. 3
- 3. If H(k,i) = (h(k) + i) % m, where k is the key, i is the number of collisions and m is the size of the hash table, then one of the major disadvantage of this function is
 - a. Overflow
 - b. Non-retrieval key
 - c. Primary clustering
 - d. Secondary clustering
- 4. Here is an array which has just been partitioned by the first step of quick sort.

Which of these elements could be the pivot?

- a. 4
- b. 5
- c. 2
- d. a or b
- 5. The property of good hash function is that
 - a. It minimizes the rate of overflow
 - b. It preserves the order of key value
 - c. It minimizes number of collisions
 - d. None of the above
- 6. Among the following is a sorting technique that doesn't compare elements and is stable. Identify the technique
 - a. Bubble sort
 - b. Count sort

c. d. 7. Bucket sort is a. b. c. d.	Merge sort Insertion sort more suitable for Character string data Float data in the interval [0,1] Integer data in the interval [0,n - 1] All the above
8. To sort an arra	ay of doubles, it is better to use:
a.	Radix sort
b.	Quick sort
c.	Insertion sort
d.	Counting sort
=	esitive numbers c and n_0 such that $f(n) \le c$. $g(n)$ for all $n \ge n_0$, means
a.	f = O(g)
b.	$f = \Theta(g)$
	$f(n) = c \cdot (f(n-1))$
d.	$f = \Omega(n)$
10. Which of the	following sorting algorithm is of the divide-and-conquer type?
a.	Bubble sort
b.	Insertion sort
c.	Quick sort
d.	None of these
Section B: Short answ	vers questions:
	n that swaps two values. Your function should be called as follows: ; int b = 9; ;

 n ← length of array A for i ← 0 to n-1 do insert A[i] into B[n* A[i]] for i ← 0 to n - 1 do sort B[i] using insertion sort concatenate the lists B[0] up to B[n-1] in order 	
if the array A is, 0.79, 0.13, 0.16, 0.64, 0.39, 0.20, 0.89, 0.53, 0.71, 0.42, show the val	ues
of B[7] before concatenation.	
3. Write an algorithm that can be called by quick sort to select a mid point in the data then rearrange elements so that any thing greater than this mid point will be after i and anything less than mid point will be before it.	

2. Observe the following algorithm,

•••••		••••			••••		• • • • • •	• • • • • •						
4. I														
	h(key) = key % m, where m = 13 use chaining to resolve collision													
								77						
	75, 11, 68, 79, 52, 63, 84, 56, 46, 55, 77 How many collisions occurred?													
0	1	2	3	4	5	6	7	8	9	10	11	12		
								• • • • • • •						
		• • • • • •			• • • • • •			• • • • • •				• • • • • • • •		
		•••••						• • • • • • •						
		• • • • • •			••••			• • • • • • •				• • • • • • • • •		
		••••			••••			• • • • • • •						
		••••			••••		• • • • • •	• • • • • • •						
		••••			••••			• • • • • •				• • • • • • • •		
		••••			••••		• • • • • •	• • • • • •		•••••				
	•••••	• • • • • • •			••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • •	• • • • • • •				• • • • • • • • • • • • • • • • • • • •		

.....