
Chapter 3

Applications of
Differentiation

3.1 Linear

Approximations

and Newton’s

Method

1. f(x0) = f(1) =
√
1 = 1

f 0(x) = 1
2
x−1/2

f 0(x0) = f 0(1) = 1
2

So
L(x) = f(x0) + f 0(x0)(x− x0)

= 1 + 1
2
(x− 1)

= 1
2
+ 1
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2. f(0) = 1, and f 0(x) = 1
3
(x+1)−2/3, so

f 0(0) = 1
3
. The linear approximation

is
L(x) = 1 + 1

3
(x− 0).
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3. f(x) =
√
2x+ 9, x0 = 0

f(x0) = f(0) =
√
2 · 0 + 9 = 3

f 0(x) = 1
2
(2x+9)−1/2 ·2 = (2x+9)−1/2

f 0(x0) = f 0(0) = (2 · 0 + 9)−1/2 = 1
3

So
L(x) = f(x0) + f 0(x0)(x− x0)

= 3 + 1
3
(x− 0)

= 3 + 1
3
x
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4. f(1) = 2, and f 0(x) = −2
x2
, so f 0(1) =

−2. The linear approximation is
L(x) = 2 +−2(x− 1).
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5. f(x) = sin 3x, x0 = 0
f(x0) = f(0) = sin(3 · 0) = sin 0 = 0
f 0(x) = 3 cos 3x
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f 0(x0) = f 0(0) = 3 cos 3 · 0 = 3
L(x) = f(x0) + f 0(x0)(x− x0)

= 0 + 3(x− 0)
= 3x
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6. f(π) = 0, and f 0(x) = cosx,
so f 0(π) = −1. The linear approxi-
mation is
L(x) = 0 +−1(x− π).

y

3

1

2

0.5

0
1

-0.5

-1

0

x

54

7. (a) f(0) = g(0) = h(0) = 1, so all
pass through the point (0, 1).
f 0(0) = 2(0 + 1) = 2,
g0(0) = 2 cos(2 · 0) = 2, and
h0(0) = 2e2·0 = 2,
so all have slope 2 at x = 0.
The linear approximation at x =
0 for all three functions is
L(x) = 1 + 2x.

(b) Graph of f(x) = (x+ 1)2:
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Graph of f(x) = 1 + sin(2x):

y

5

4

3

2

1

0

-1

x

3210-1-2-3

Graph of f(x) = e2x:
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8. (a) f(0) = g(0) = h(0) = 0, so all
pass through the point (0, 0).
f 0(0) = cos 0 = 1,
g0(0) = 1

1+02
= 1, and

h0(0) = cosh 0 = 1,
so all have slope 1 at x = 0.
The linear approximation at x =
0 for all three functions is
L(x) = x.

(b) Graph of f(x) = sinx:
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Graph of g(x) = tan−1 x:
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Graph of h(x) = sinhx:
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sinx is the closest fit, but sinhx
is close.

9. (a) f(x) = 4
√
16 + x, x0 = 0

f(0) = 4
√
16 + 0 = 2

f 0(x) = 1
4
(16 + x)−3/4

f 0(0) = 1
4
(16 + 0)−3/4 = 1

32

L(x) = f(0) + f 0(0)(x− 0)
= 2 + 1

32
x

L(0.04) = 2+ 1
32
(0.04) = 2.00125

(b) L(0.08) = 2 + 1
32
(0.08) = 2.0025

(c) L(0.16) = 2 + 1
32
(0.16) = 2.005

10. (a) f(x) = sinx, x0 = 0

f (0) = 0
f 0(x) = cosx
f 0 (0) = cos 0 = 1
L(x) = f (0) + f 0 (0) (x− 0)

= 0 + 1 · x
L(0.1) = 0.1

(b) f(x) = sinx, x0 =
π
3

f
¡
π
3

¢
=

√
3
2

f 0
¡
π
3

¢
= cos π

3
= 1

2

L(x) = f
¡
π
3

¢
+ f 0

¡
π
3

¢ ¡
x− π

3

¢
=

√
3
2
+ 1

2

¡
x− π

3

¢
L(1) =

√
3
2
+ 1

2

¡
1− π

3

¢ ≈ 0.842
(c) f(x) = sinx, x0 =

2π
3

f
¡
2π
3

¢
=

√
3
2

f 0
¡
2π
3

¢
= cos 2π

3
= −1

2

L(x) = f
¡
2π
3

¢
+f 0

¡
2π
3

¢ ¡
x− 2π

3

¢
=

√
3
2
− 1

2

¡
x− 2π

3

¢
L
¡
9
4

¢
=

√
3
2
− 1
2

¡
9
4
− 2π

3

¢ ≈ 0.788
11. (a) 4

√
16.04 = 2.0012488

L(0.04) = 2.00125
|2.0012488− 2.00125|
= .00000117

(b) 4
√
16.08 = 2.0024953

L(.08) = 2.0025
|2.0024953− 2.0025|
= .00000467

(c) 4
√
16.16 = 2.0049814

L(.16) = 2.005
|2.0049814− 2.005| = .0000186

12. e(0.04) ≈ 0.00000117, e(0.04)
0.042

≈
0.000731
e(0.08) ≈ 0.00000467, e(0.08)

0.082
≈

0.000730
e(0.16) ≈ 0.00001864, e(0.16)

0.162
≈

0.000728.
It seems that e(∆x) ≈ 0.00073(∆x)2.

13. (a) L(x) = f(20) + 18−14
20−30(x− 20)

L(24) ≈ 18− 4
10
(24− 20)

= 18− 0.4(4)
= 16.4 games
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(b) L(x) = f(40) + 14−12
30−40(x− 40)

f(36) ≈ 12− 2
10
(36− 40)

= 12− 0.2(−4)
= 12.8 games

14. (a) L(x) = f(80) + 120−84
80−60 (x− 80)

L(72) = 120 + 36
20
(72− 80)

= 120 + 1.8(−8)
= 105.6 cans

(b) L(x) = f(100)+ 168−120
100−80 (x−100)

L(94) = 168− 48
20
(94− 100)

= 168− 2.4(−6)
= 182.4 cans

15. (a) L(x) = f(200)+ 142−128
220−200(x−200)

L(208) = 128 + 14
20
(208− 200)

= 128 + 0.7(8) = 133.6

(b) L(x) = f(240)+ 142−136
220−240(x−240)

L(232) = 136− 6
20
(232− 240)

= 136− 0.3(−8) = 138.4

16. (a) L(x) = f(10) + 14−8
10−5(x− 10)

L(8) = 14 + 6
5
(−2) = 11.6

(b) L(x) = f(10) + 14−8
10−5(x− 10)

L(12) = 14 + 6
5
(2) = 16.4

17. The first tangent line intersects the x-
axis at a point a little to the right of
1. So x1 is about 1.25 (very roughly).
The second tangent line intersects the
x-axis at a point between 1 and x1, so
x2 is about 1.1 (very roughly). New-
ton’s Method will converge to the zero
at x = 1.

18. Starting with x0 = −2, Newton’s
method converges to x = −1.
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Starting with x0 = 0.4, Newton’s
method converges to x = 1.
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19. It wouldn’t work because f 0(0) = 0.

20. x0 = 0.2 works better as an initial
guess. After jumping to x1 = 2.55,
the sequence rapidly decreases toward
x = 1. Starting with x0 = 10, it takes
several steps to get to 2.5, on the way
to x = 1.

21. f(x) = x3 + 3x2 − 1 = 0, x0 = 1
f 0(x) = 3x2 + 6x

(a) x1 = x0 − f(x0)

f 0(x0)

= 1− 1
3 + 3 · 12 − 1
3 · 12 + 6 · 1

= 1− 3
9
=
2

3

x2 = x1 − f(x1)

f 0(x1)

=
2

3
−
¡
2
3

¢3
+ 3

¡
2
3

¢2 − 1
3
¡
2
3

¢2
+ 6

¡
2
3

¢
=
79

144
≈ 0.5486
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(b) 0.53209

22. f(x) = x3 + 4x2 − x− 1, x0 = −1
f 0(x) = 3x2 + 8x− 1

(a) x1 = x0 − f(x0)

f 0(x0)

= −1− 3

−6 = −
1

2

x2 = x1 − f(x1)

f 0(x1)

= −1
2
− 0.375−4.25 = −0.4117647

(b) The root is x ≈ −0.4064206546.
23. f(x) = x4 − 3x2 + 1 = 0, x0 = 1

f 0(x) = 4x3 − 6x

(a) x1 = x0 − f(x0)

f 0(x0)

= 1−
µ
14 − 3 · 12 + 1
4 · 13 − 6 · 1

¶
=
1

2

x2 = x1 − f(x1)

f 0(x1)

=
1

2
−
Ã¡

1
2

¢4 − 3 ¡1
2

¢2
+ 1

4
¡
1
2

¢3 − 6 ¡1
2

¢ !
=
5

8

(b) 0.61803

24. f(x) = x4 − 3x2 + 1, x0 = −1
f 0(x) = 4x3 − 6x

(a) x1 = x0 − f(x0)

f 0(x0)

= −1− −1
2
= −1

2

x2 = x1 − f(x1)

f 0(x1)

= −1
2
− 0.3125

2.5
= −0.625

(b) The root is x ≈ −0.6180339887.

25. Use xi+1 = xi − f(xi)
f 0(xi)

with

f(x) = x3 + 4x2 − 3x+ 1, and
f 0(x) = 3x2 + 8x− 3.
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Start with x0 = −5 to find the root
near −5:
x1 = −4.718750, x2 = −4.686202,
x3 = −4.6857796, x4 = −4.6857795

26. From the graph, we see two roots:
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Use xi+1 = xi − f(xi)
f 0(xi)

with

f(x) = x4 − 4x3 + x2 − 1, and
f 0(x) = 4x3 − 12x2 + 2x.
Start with x0 = 4 to find the root be-
low 4:
x1 = 3.791666667, x2 = 3.753630030,
x3 = 3.752433459, x4 = 3.752432297

Start with x = −1 to find the root
just above −1:
x1 = −0.7222222222,
x2 = −0.5810217936,
x3 = −0.5416512863,
x4 = −0.5387668233,
x5 = −0.5387519962

27. Use xi+1 = xi − f(xi)
f 0(xi)

with
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f(x) = x5 + 3x3 + x− 1, and
f 0(x) = 5x4 + 9x2 + 1.
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Start with x0 = 0.5 to find the root
near 0.5:
x1 = 0.526316, x2 = 0.525262,
x3 = 0.525261, x4 = 0.525261

28. Use xi+1 = xi − f(xi)
f 0(xi)

with

f(x) = cosx− x, and
f 0(x) = − sinx− 1.
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Start with x0 = 1 to find the root near
1:
x1 = 0.750364, x2 = 0.739113,
x3 = 0.739085, x4 = 0.739085

29. Use xi+1 = xi − f(xi)
f 0(xi)

with

f(x) = sinx− x2 + 1, and
f 0(x) = cosx− 2x

x
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Start with x0 = −0.5 to find the root
near −0.5:
x1 = −0.644108, x2 = −0.636751
x3 = −0.636733, x4 = −0.636733

Start with x0 = 1.5 to find the root
near 1.5:
x1 = 1.413799, x2 = 1.409634
x3 = 1.409624, x4 = 1.409624

30. Use xi+1 = xi − f(xi)
f 0(xi)

with

f(x) = cosx2 − x, and
f 0(x) = 2x sinx2 − 1.

1
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Start with x0 = 1 to find the root
between 0 and 1:
x1 = 0.8286590991, x2 =
0.8016918647,
x3 = 0.8010710854, x4 =
0.8010707652

31. Use xi+1 = xi − f(xi)
f 0(xi)

with

f(x) = ex + x, and
f 0(x) = ex + 1
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Start with x0 = −0.5 to find the root
between 0 and -1:
x1 = −0.566311, x2 = −0.567143
x3 = −0.567143, x4 = −0.567143

32. Use xi+1 = xi − f(xi)
f 0(xi)

with

f(x) = e−x −√x, and
f 0(x) = −e−x − 1

2
√
x
.
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21.510.50

Start with x0 = 0.5 to find the root
close to 0.5:
x1 = 0.4234369253, x2 =
0.4262982542,
x3 = 0.4263027510

33. xn+1 = xn − f(xn)

f 0(xn)

= xn −
µ
x2n − c

2xn

¶
= xn − x2n

2xn
+

c

2xn
=

xn
2
+

c

2xn

=
1

2

µ
xn +

c

xn

¶
If x0 <

√
a, then a/x0 >

√
a, so

x0 <
√
a < a/x0.

34. The root of xn− c is n
√
c, so Newton’s

method approximates this number.
Newton’s method gives

xi+1 = xi − f(xi)

f 0(xi)
= xi − xni − c

nxn−1i

=
1

n
(nxi − xi + cx1−ni ),

as desired.

35. f(x) = x2 − 11; x0 = 3;
√
11 ≈

3.316625

36. Newton’s method for
√
x near x = 23

is xn+1 =
1
2
(xn + 23/xn). Start with

x0 = 5 to get: x1 = 4.8, x2 =
4.7958333, and x3 = 4.7958315.

37. f(x) = x3 − 11; x0 = 2; 3
√
11 ≈

2.22398

38. Newton’s method for 3
√
x near x = 23

is xn+1 =
1
3
(2xn + 23/x

2
n). Start with

x0 = 3 to get:
x1 = 2.851851851, x2 = 2.843889316,
and
x3 = 2.884386698.

39. f(x) = x4.4 − 24; x0 = 2; 4.4
√
24 ≈

2.059133

40. Newton’s method for 4.6
√
x near x =

24 is xn+1 = 1
4.6
(3.6xn + 24/x3.6n ).

Start with x0 = 2 to get:
x1 = 1.995417100, x2 = 1.995473305,
and
x3 = 1.995473304.

41. f(x) = 4x3 − 7x2 + 1 = 0, x0 = 0
f 0(x) = 12x2 − 14x
x1 = x0 − f(x0)

f 0(x0) = 0− 1
0

The method fails because f 0(x0) = 0
Roots are 0.3454, 0.4362, 1.659.

42. Newton’s method fails because f 0 =
0. As long as the sequence avoids
xn = 0 and xn = 7

6
(the zeros of
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f 0), Newton’s method will succeed.
Which root is found depends on the
starting place.

43. f(x) = x2 + 1, x0 = 0
f 0(x) = 2x
x1 = x0 − f(x0)

f 0(x0) = 0− 1
0

The method fails because f 0(x0) = 0.
There are no roots.

44. Newton’s method fails because the
function does not have a root!

45. f(x) =
4x2 − 8x+ 1
4x2 − 3x− 7 = 0, x0 = −1

Note: f(x0) = f(−1) is undefined, so
Newton’s Method fails because x0 is
not in the domain of f . Notice that
f(x) = 0 only when 4x2 − 8x + 1 =
0. So using Newton’s Method on
g(x) = 4x2 − 8x + 1 with x0 = −1
leads to x ≈ .1339. The other root is
x ≈ 1.8660.

46. The slope tends to infinity at the zero.
For every starting point, the sequence
does not converge.

47. (a) With x0 = 1.2,
x1 = 0.800000000,
x2 = 0.950000000,
x3 = 0.995652174,
x4 = 0.999962680,
x5 = 0.999999997,
x6 = 1.000000000,
x7 = 1.000000000

(b) With x0 = 2.2,
x0 = 2.200000, x1 = 2.107692,
x2 = 2.056342, x3 = 2.028903,
x4 = 2.014652, x5 = 2.007378,
x6 = 2.003703, x7 = 2.001855,
x8 = 2.000928, x9 = 2.000464,
x10 = 2.000232, x11 = 2.000116,
x12 = 2.000058, x13 = 2.000029,
x14 = 2.000015, x15 = 2.000007,

x16 = 2.000004, x17 = 2.000002,
x18 = 2.000001, x19 = 2.000000,
x20 = 2.000000

The convergence is much faster with
x0 = 1.2.

48. Starting with x0 = 0.2 we get a
sequence that converges to 0 very
slowly. (The 20th iteration is still
not accurate past 7 decimal places.)
Starting with x0 = 3 we get a se-
quence that quickly converges to π.
(The third iteration is already accu-
rate to 10 decimal places!)

49. (a) With x0 = −1.1
x1 = −1.0507937,
x2 = −1.0256065,
x3 = −1.0128572,
x4 = −1.0064423,
x5 = −1.0032246,
x6 = −1.0016132,
x7 = −1.0008068,
x8 = −1.0004035,
x9 = −1.0002017,
x10 = −1.0001009,
x11 = −1.0000504,
x12 = −1.0000252,
x13 = −1.0000126,
x14 = −1.0000063,
x15 = −1.0000032,
x16 = −1.0000016,
x17 = −1.0000008,
x18 = −1.0000004,
x19 = −1.0000002,
x20 = −1.0000001,
x21 = −1.0000000,
x22 = −1.0000000

(b) With x0 = 2.1
x0 = 2.100000000,
x1 = 2.006060606,
x2 = 2.000024340,
x3 = 2.000000000,
x4 = 2.000000000
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The rate of convergence in (a) is
slower than the rate of convergence
in (b).

50. From exercise 47, f(x) = (x −
1)(x − 2)2. Newton’s method con-
verges slowly near the double root.
From exercise 49, f(x) = (x− 2)(x+
1)2. Newton’s method again con-
verges slowly near the double root.
In exercise 48, Newton’s method con-
verges slowly near 0, which is a zero
of both x and sinx but converges
quickly near π, which is a zero only
of sinx.

51. f(x) = tanx, f(0) = tan 0 = 0
f 0(x) = sec2 x, f 0(0) = sec2 0 = 1
L(x) = f(0) + f 0(0)(x− 0)

= 0 + 1(x− 0) = x
L(0.01) = 0.01
f(0.01) = tan 0.01 ≈ 0.0100003
L(0.1) = 0.1
f(0.1) = tan(0.1) ≈ 0.1003
L(1) = 1
f(1) = tan 1 ≈ 1.557

52. The linear approximation for
√
1 + x

at x = 0 is L(x) = 1 + 1
2
x. The er-

ror when x = 0.01 is 0.0000124, when
x = 0.1 is 0.00119, and when x = 1 is
0.0858.

53. f(x) =
√
4 + x

f(0) =
√
4 + 0 = 2

f 0(x) = 1
2
(4 + x)−1/2

f 0(0) = 1
2
(4 + 0)−1/2 = 1

4

L(x) = f(0) + f 0(0)(x− 0) = 2 + 1
4
x

L(0.01) = 2 + 1
4
(0.01) = 2.0025

f(0.01) =
√
4 + 0.01 ≈ 2.002498

L(0.1) = 2 + 1
4
(0.1) = 2.025

f(0.1) =
√
4 + 0.1 ≈ 2.0248

L(1) = 2 + 1
4
(1) = 2.25

f(1) =
√
4 + 1 ≈ 2.2361

54. The linear approximation for ex at
x = 0 is L(x) = 1+x. The error when

x = 0.01 is 0.0000502, when x = 0.1
is 0.00517, and when x = 1 is 0.718.

55. If you graph | tanx− x|, you see that
the difference is less than .01 on the
interval −.306 < x < .306 (In fact, a
slightly larger interval would work as
well.)

56. This can be solved by trial and er-
ror, or by using the CAS to plot
ex − 1 − x − 0.01, and solve for the
intercepts. The interval is approxi-
mately
−0.1448347511 ≤ x ≤ 0.1381651224.

57. For small x we approximate ex by
x+ 1 (see exercise 54).
Le2πd/L − e−2πd/L

e2πd/L + e−2πd/L

≈ L
£¡
1 + 2πd

L

¢− ¡1− 2πd
L

¢¤¡
1 + 2πd

L

¢
+
¡
1− 2πd

L

¢
≈ L

¡
4πd
L

¢
2

= 2πd

f(d) ≈ 4.9
π
· 2πd = 9.8d

58. If f(x) =
8πhcx−5

ehc/(kTx) − 1,
then using the linear approximation
we see that

f(x) ≈ 8πhcx−5

(1 + hc
kTx
)− 1 = 8πkTx

−4

as desired.

59. The smallest positive solution of the
first equation is 0.132782, and for the
second equation the smallest positive
solution is 1, so the species modeled
by the second equation is certain to
go extinct. This is consistent with the
models, since the expected number of
offspring for the population modeled
by the first equation is 2.2, while for
the second equation it is only 1.3.
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60. The linear approximation is given by

L(0) + L0(0)(v − 0)

so we first find L0(v):

L0(v) =
−L0v

c2
p
1− v2/c2

.

Thus L0(0) = 0 and so the linear ap-
proximation is just L(0) = L0. The
linear approximation is constant and
equal to the length of the object at
rest, so this approximation suggests
that there is never any velocity at
which an object contracts to 90% of
its original length.

61. The only positive solution is 0.6407.

62. There are three positive solutions.
Using a Newton’s method or a CAS to
solve for them gives: x = 0.6492189,
x = 3, and x = 3.8507811.

63. W (x) =
PR2

(R+ x)2
, x0 = 0

W 0(x) =
−2PR2
(R+ x)3

L(x) =W (x0) +W 0(x0)(x− x0)

=
PR2

(R+ 0)2
+

µ −2PR2
(R+ 0)3

¶
(x−0)

= P − 2Px
R

L(x) = 120− .01(120) = P − 2Px
R

= 120− 2 · 120x
R

.01 =
2x

R
x = .005R = .005(20,900,000)
= 104,500 ft

64. If m = m0(1− v2/c2)1/2, then
m0 = (m0/2)(1− v2/c2)−1/2(−2v/c2),
and m0 = 0 when v = 0. The linear
approximation is the constant func-
tion m = m0 for small values v.

65. To find the smallest positive solu-
tion of tan (

√
x) =

√
x, plot f(x) =

tan (
√
x) − √x to see that it crosses

the x-axis at approximately x = 20.
Newton’s method (3 iterations) leads
to L ≈ 20.19.
y =

√
L − √Lx − √L cos√Lx +

sin
√
Lx

= 4.493− 4.493x− 4.493 cos 4.493x
+ sin 4.493x

66. The solution is f = 0. New-
ton’s method is tricky to use because
of the potential for rounding error
when using c = 10−13. In general,
S(f) is many orders of magnitude
smaller than S0(f) for f near zero, so
S(f)/S0(f) rounds to 0, and once this
happens, Newton’s method stops.

67. The linear approximation for the in-
verse tangent function at x = 0 is
f(x) ≈ f(0) + f 0(0)(x− 0)
tan−1(x) ≈ tan−1(0) + 1

1+02
(x− 0)

tan−1(x) ≈ x
Using this approximation,

φ = tan−1
µ
3[1− d/D]− w/2

D − d

¶
φ ≈ 3[1− d/D]− w/2

D − d
If d = 0, then φ ≈ 3−w/2

D
. Thus, if w

or D increase, then φ decreases.

68. d0(θ) = D(w/6 sin(θ)
d(0) = D(1− w/6) so
d(θ) ≈ d(0) + d0(0)(θ − 0)

= D(1 − w/6) + 0(θ) = D(1 −
w/6),
as desired.

69. (a) As we should expect, when we
start with x0 = 0.1, Newton’s
method converges to 0.

(b) When we start with x0 = 1.1,
Newton’s method converges to 1.
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(c) When we start with x0 = 2.1,
Newton’s method converges to 2.

70. (a) 0

(b) 2

(c) 1

3.2 Indeterminate Forms

and L’Hôpital’s Rule

1. lim
x→−2

x+ 2

x2 − 4
= lim

x→−2
x+ 2

(x+ 2)(x− 2)
= lim

x→−2
1

x− 2 = −
1

4

2. lim
x→2

x2 − 4
x2 − 3x+ 2

= lim
x→2

(x− 2)(x+ 2)
(x− 2)(x− 1)

= lim
x→2

x+ 2

x− 1 = 4

3. lim
x→∞

3x2 + 2

x2 − 4
= lim

x→∞
3 + 2

x2

1− 4
x2

=
3

1
= 3

4. lim
x→−∞

x+ 1

x2 + 4x+ 3
is type ∞∞ ;

we apply L’Hôpital’s Rule to get

lim
x→−∞

1

2x+ 4
= 0.

5. lim
x→0

e2x − 1
x

is type 0
0
;

we apply L’Hôpital’s Rule to get

lim
x→0

2e2x

1
=
2

1
= 2.

6. lim
x→0

sinx

e3x − 1 is type
0
0
;

we apply L’Hôpital’s Rule to get

lim
x→0

cosx

3e3x
=
1

3
.

7. lim
x→0

tan−1 x
sinx

is type 0
0
;

we apply L’Hôpital’s Rule to get

lim
x→0

1/ (1 + x2)

cosx
= lim

x→0
1

1
= 1.

8. lim
x→0

sinx

sin−1 x
is type 0

0
;

we apply L’Hôpital’s Rule to get

lim
x→0

cosx
1√
1−x2

= 1.

9. lim
x→π

sin 2x

sinx
is type 0

0
;

we apply L’Hôpital’s Rule to get

lim
x→π

2 cos 2x

cosx
=
2(1)

−1 = −2.

10. lim
x→−1

cos−1 x
x2 − 1 is undefined (numerator

goes to π, denominator goes to 0).

11. lim
x→0

sinx− x

x3
is type 0

0
;

we apply L’Hôpital’s Rule thrice to
get

= lim
x→0

cosx− 1
3x2

= lim
x→0
− sinx
6x

= lim
x→0
− cosx
6

=
−1
6
.

12. lim
x→0

tanx− x

x3
is type 0

0
;

we apply L’Hôpital’s Rule to get

lim
x→0

sec2 x− 1
3x2

.
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Apply L’Hôpital’s Rule twice more to
get

lim
x→0

2 sec2 x tanx

6x

= lim
x→0

4 sec2 x tan2 x+ 2 sec4 x

6
=
1

3
.

13. lim
x→1

√
x− 1
x− 1

= lim
x→1

√
x− 1
x− 1

√
x+ 1√
x+ 1

= lim
x→1

x− 1
(x− 1) (√x+ 1)

= lim
x→1

1√
x+ 1

=
1

2

14. lim
x→1

lnx

x− 1 is type
0
0
;

we apply L’Hôpital’s Rule to get

lim
x→1

1
x

1
= 1.

15. lim
x→∞

x3

ex
is type ∞∞ ;

we apply L’Hôpital’s Rule thrice to
get

lim
x→∞

3x2

ex
= lim

x→∞
6x
ex

= lim
x→∞

6
ex
= 0.

16. lim
x→∞

ex

x4
is type ∞∞ ;

we apply L’Hôpital’s Rule four times
to get

lim
x→∞

ex

4x3
= lim

x→∞
ex

12x2

= lim
x→∞

ex

24x
= lim

x→∞
ex

24
=∞.

17. lim
x→0

x cosx− sinx
x sin2 x

is type ∞∞ ;

we apply L’Hôpital’s Rule twice to get

lim
x→0

cosx− x sinx− cosx
sin2 x+ 2x sinx cosx

= lim
x→0

−x sinx
sinx (sinx+ 2x cosx)

= lim
x→0

−x
sinx+ 2x cosx

= lim
x→0

−1
cosx+ 2 cosx− 2x sinx

= −1
3
.

18. Rewriting as one fraction we have

lim
x→0

µ
cot2 x− 1

x2

¶
= lim

x→0

µ
x2 cot2 x− sin2 x

x2 sin2 x

¶
.

This is of the form 0
0
. We very

carefully apply L’Hôpital’s Rule four
times to find that this is equal to

lim
x→0

f(x)

g(x)

where

f(x) = −16 cos2 x+ 16 sin2 x
+ 64x cosx sinx− 8x2 sin2 x
+ 8x2 cos2 x

and

g(x) = 24 cos2 x− 24 sin2 x
− 64x cosx sinx+ 8x2 sin2 x
− 8x2 cos2 x

so that the limit is equal to

−16
24

= −2
3
.

19. lim
x→1

sinπx

x− 1 is type
∞
∞ ;

we apply L’Hôpital’s Rule to get

lim
x→1

π cosπx

1
=

π(−1)
1

= −π.

20. lim
x→1

ex−1 − 1
x2 − 1 is type 0

0
;

we apply L’Hôpital’s Rule to get

lim
x→1

ex−1

2x
=
1

2
.
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21. lim
x→∞

lnx

x2
is type ∞∞ ;

we apply L’Hôpital’s Rule to get

lim
x→∞

1/x

2x
= lim

x→∞
1

2x2
= 0.

22. lim
x→∞

lnx√
x
is type ∞∞ ;

we apply L’Hôpital’s Rule to get

lim
x→∞

1
x
1
2
√
x

= lim
x→∞

2√
x
= 0.

23. lim
x→∞

xe−x = lim
x→∞

x

ex
is type 0

0
;

we apply L’Hôpital’s Rule to get

lim
x→∞

1

ex
= 0.

24. lim
x→∞

x sin
1

x
= lim

x→∞
sin 1

x

1/x
is type 0

0
;

we apply L’Hôpital’s Rule to get

lim
x→∞

− 1
x2
cos 1

x

− 1
x2

= lim
x→∞

cos
1

x
= 1.

25. As x approaches 1 from below, lnx
is a small negative number. Hence
ln(lnx) is undefined, so the limit is
undefined.

26. lim
x→0

sin(sinx)

sin(x)
is type 0

0
;

we apply L’Hôpital’s Rule to get

lim
x→0

cos(sinx) cos(x)

cos(x)
= 1.

27. lim
x→0+

x lnx = lim
x→0+

lnx

1/x
is type ∞∞ ;

we apply L’Hôpital’s Rule to get

lim
x→0+

1/x

−1/x2 = lim
x→0+

−x = 0.

28. lim
x→0+

sinx√
x
is type 0

0
;

we apply L’Hôpital’s Rule to get

lim
x→0+

cosx
1
2
√
x

= lim
x→0+

2
√
x cosx = 0.

29. lim
x→0+

lnx

cotx
is type ∞∞ ;

we apply L’Hôpital’s Rule to get

lim
x→0+

1/x

− csc2 x
= lim

x→0+
− sin2 x

x

= lim
x→0+

µ
− sinxsinx

x

¶
= (0)(1) = 0.

30. lim
x→0+

√
x

lnx
= 0 (numerator goes to 0

and denominator goes to −∞).

31. lim
x→∞

³√
x2 + 1− x

´
= lim

x→∞

Ã³√
x2 + 1− x

´ √x2 + 1 + x√
x2 + 1 + x

!
= lim

x→∞

µ
x2 + 1− x2√
x2 + 1 + x

¶
= lim

x→∞
1√

x2 + 1 + x
= 0.

32. lim
x→∞

lnx − x = lim
x→∞

lnx
x
− 1
1
x

= −∞
since the numerator goes to −1 and
the denominator goes to 0+. (Recall
Example 2.8 which shows lim

x→∞
lnx
x
=

0.)

33. Let y =
¡
1 + 1

x

¢x
.

Then ln y = x ln
¡
1 + 1

x

¢
. Then

lim
x→∞

ln y = lim
x→∞

x ln

µ
1 +

1

x

¶
= lim

x→∞
ln
¡
1 + 1

x

¢
1/x
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= lim
x→∞

1
1+ 1

x

¡−1
x2

¢
−1/x2

= lim
x→∞

1

1 + 1
x

= 1.

Hence lim
x→∞

y = lim
x→∞

eln y = e.

34. Notice that the limit in question has
the indeterminate form 1∞. Also,
note that as x gets large,¯̄̄̄

x+ 1

x− 2
¯̄̄̄
=

x+ 1

x− 2 .

Define

y =

µ
x+ 1

x− 2
¶√x2−4

.

Then

ln y =
√
x2 − 4 ln

µ
x+ 1

x− 2
¶

and

lim
x→∞

ln y

= lim
x→∞

µ√
x2 − 4 ln

µ
x+ 1

x− 2
¶¶

= lim
x→∞

Ã
ln
¡
x+1
x−2
¢

1√
x2−4

!

This last limit has indeterminate form
0
0
, so we can apply L’Hôpital’s Rule
and simplify to find that the above is
equal to

lim
x→∞

−3(x2 − 4)3/2
−x3 + x2 + 2x

and this is equal to 3. So lim
x→∞

ln y =

3. Thus

lim
x→∞

y = lim
x→∞

eln y = e3 ≈ 20.086.

35. lim
x→0+

µ
1√
x
−
√
x√

x+ 1

¶
= lim

x→0+

µ√
x+ 1− (√x)2√

x
√
x+ 1

¶
= lim

x→0+

µ√
x+ 1− x√
x
√
x+ 1

¶
=∞.

36. lim
x→1

√
5− x− 2√
10− x− 3 is type

0
0
;

we apply L’Hôpital’s Rule to get

lim
x→1

1
2
(5− x)−1/2(−1)

1
2
(10− x)−1/2(−1)

= lim
x→1

√
10− x√
5− x

=
3

2
.

37. Let y = (1/x)x. Then ln y =
x ln(1/x). Then

lim
x→0+

ln y = lim
x→0+

x ln(1/x) = 0,

by Exercise 27. Thus

lim
x→0+

y = lim
x→0+

eln y = 1.

38. Let y = lim
x→0+

(cosx)1/x.

Then

ln y = lim
x→0+

1

x
ln cosx

= lim
x→0+

ln(cosx)

x
is type 0

0

so apply L’Hôpital’s Rule to get

lim
x→0+

− tanx
1

= 0.

Therefore the limit is y = e0 = 1.

39. L’Hôpital’s rule does not apply. As
x → 0, the numerator gets close to
1 and the denominator is small and
positive. Hence the limit is ∞.

40. lim
x→0

ex − 1
x2

is type 0
0
, but lim

x→0
ex

2x
is

not,

so L’Hôpital’s Rule does not apply to
this limit.
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41. L’Hôpital’s rule does not apply. As
x → 0, the numerator is small and
positive while the denominator goes
to −∞. Hence the limit is 0. Also
lim
x→0

2x

2/x
, which equals lim

x→0
x2, is not of

the form 0
0
so L’Hôpital’s rule doesn’t

apply here either.

42. lim
x→0

sinx

x2
is type 0

0
, but lim

x→0
cosx

2x
is

not,

so L’Hôpital’s rule does not apply.
This limit is undefined because the
numerator goes to 1 and the denomi-
nator goes to 0.

43. Starting with lim
x→0

sin 3x

sin 2x
, we cannot

“cancel sin” to get lim
x→0

3x
2x
. We can

cancel the x’s in the last limit to get
the final answser of 3/2. The first
step is likely to give a correct answer
because the linear approximation of
sin 3x is 3x, and the linear approxi-
mation of sin 2x is 2x. The linear ap-
proximations are better the closer x
is to zero, so the limits are likely to
be the same.

44. lim
x→0

sinnx

sinmx
is type 0

0
;

we apply L’Hôpital’s Rule to get

lim
x→0

n cosnx

m cosmx
=

n

m
.

45. (a) lim
x→0

sinx2

x2
= lim

x→0
2x cosx2

2x

= lim
x→0

cosx2 = 1,

which is the same as lim
x→0

sinx

x
.

(b) lim
x→0

1− cosx2
x4

= lim
x→0

2x sinx2

4x3
= lim

x→0
sinx2

2x2

=
1

2
lim
x→0

sinx2

x2
= (1/2) (1) = 1/2 (by part (a)),

while

lim
x→0

1− cosx
x2

= lim
x→0

sinx

2x

=
1

2
lim
x→0

sinx

x

=
1

2
(1) =

1

2
so both of these limits are the
same.

46. Based on the patterns found in exer-
cise 45, we should guess

lim
x→0

sinx3

x3
= 1 and

lim
x→0

1− cosx3
x6

=
1

2
.

47. lim
x→0

sin kx2

x2

= lim
x→0

2kx cos kx2

2x
= lim

x→0
k cos kx2 = k(1) = k

48. Based on the result of exercise 47, we
see that a limit of type 0

0
can have any

real value, be ±∞, or be undefined.
49. lim

x→∞
ex = lim

x→∞
xn =∞

lim
x→∞

ex

xn
= ∞ since n applications of

L’Hôpital’s rule yields

lim
x→∞

ex

n!
=∞.

Hence ex dominates xn.

50. lim
x→∞

lnx = lim
x→∞

xp =∞.
lim
x→∞

lnx

xp
is of type ∞∞ ;

we use L’Hôpital’s Rule to get

lim
x→∞

1
x

pxp−1
= lim

x→∞
1

pxp
= 0

(since p > 0).
Therefore, xp dominates lnx.
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51. lim
x→0

ecx − 1
x

= lim
x→0

cecx

1
= c

52. lim
x→0

tan cx− cx

x3
is type 0

0
;

we use L’Hôpital’s Rule to get

lim
x→0

c sec2 cx− c

3x2

= lim
x→0

2c2 sec2 cx tan cx

6x

= lim
x→0

4c3 sec2 cx tan2 cx+ 2c3 sec4 cx

6

=
c3

3
.

53. If x → 0, then x2 → 0, so if

lim
x→0

f(x)

g(x)
= L, then lim

x→0
f(x2)

g(x2)
= L

(but not conversely). If a 6= 0 or 1,

then lim
x→a

f(x)

g(x)
involves the behavior of

the quotient near a, while lim
x→a

f(x2)

g(x2)
involves the behavior of the quotient
near the different point a2.

54. Functions f(x) = |x| and g(x) = x

work. lim
x→0

f(x)

g(x)
does not exist as

it approaches −1 from the left and
it approaches 1 from the right, but

lim
x→0

f(x2)

g(x2)
= 1.

55. lim
ω→0

2.5(4ωt− sin 4ωt)
4ω2

= lim
ω→0

2.5(4t− 4t cos 4ωt)
8ω

= lim
ω→0

2.5(16t2 sin 4ωt)

8
= 0

56. lim
ω→0

2.5− 2.5 sin(4ωt+ π
2
)

4ω2
is type 0

0
;

we apply L’Hôpital’s Rule to get

lim
ω→0
−10t cos(4ωt+ π

2
)

8ω

= lim
ω→0

40t2 sin(4ωt+ π
2
)

8
= 5t2.

t

0.60.50.40.3

1

0.20.1

2

0

1.5

0

0.5

The pitch curves drastically left to
right.

57. (a)
(x+ 1)(2 + sinx)

x(2 + cosx)

(b)
x

ex

(c)
3x+ 1

x− 7
(d)

3− 8x
1 + 2x

58. (a) lim
x→∞

x − lnx = ∞ (see exercise

32).

(b) lim
x→∞

√
x2 + 1 − x = 0 (see exer-

cise 31).

(c) lim
x→∞

√
x2 + 4x− x

= lim
x→∞

(
√
x2 + 4x− x)

= lim
x→∞

4x√
x2 + 4x+ x

= lim
x→∞

4x 1
x

(
√
x2 + 4x+ x) 1

x

= lim
x→∞

4q
1 + 4

x
+ 1

= 2,

where to get from the second to
the third line, we have multiplied
by

(
√
x2 + 4x+ x)

(
√
x2 + 4x+ x)

.

59. The area of triangular region 1 is
(1/2)(base)(height)
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= (1/2)(1− cos θ)(sin θ).
Let P be the center of the circle. The
area of region 2 equals the area of sec-
tor APC minus the area of triangle
APB. The area of the sector is θ/2,
while the area of triangle APB is
(1/2)(base)(height)
= (1/2)(cos θ)(sin θ).
Hence the area of region 1 divided by
the area of region 2 is
(1/2)(1− cos θ)(sin θ)
θ/2− (1/2)(cos θ)(sin θ)
=
(1− cos θ)(sin θ)
θ − cos θ sin θ

=
sin θ − cos θ sin θ
θ − cos θ sin θ

=
sin θ − (1/2) sin 2θ
θ − (1/2) sin 2θ

Then

lim
θ→0

sin θ − (1/2) sin 2θ
θ − (1/2) sin 2θ

= lim
θ→0

cos θ − cos 2θ
1− cos 2θ

= lim
θ→0
− sin θ + 2 sin 2θ

2 sin 2θ

= lim
θ→0
− cos θ + 4 cos 2θ

4 cos 2θ

=
−1 + 4(1)
4(1)

=
3

4

60. lim
x→0+

160x−0.4 + 90
8x−0.4 + 10

= lim
x→0+

160 + 90x0.4

8 + 10x0.4
=
160

8
= 20.

If there is no light, the pupils will ex-
pand to this size. This is the largest
the pupils can get.

lim
x→∞

160x−0.4 + 90
8x−0.4 + 10

=
90

10
= 9.

As the amount of light grows, the
pupils shrink, and the size approaches
6mm in the limit. This is the smallest
possible size of the pupils.

3.3 Maximum and

Minimum Values

1. (a) No absolute extrema.

(b) f(0) = −1 is absolute max.
There is no absolute minimum
(vertical asymptotes at x = ±1).

(c) No absolute extrema. (They
would be at the endpoints which
are not included in the interval.)

2. (a) The minimum is f(0) = 0, and
the function has no maximum.

(b) The minimum is f(0) = 0.
There is no absolute maximum
(vertical asymptote at x = 1).

(c) The function does not have a
maximum or minimum. The
minimum would be at x = 0 (not
included in this interval) while
the asymptote at x = 1 pre-
cludes an absolute maximum.

3. (a) f
³π
2
+ 2nπ

´
= 1 for any integer

n is abs max;

f

µ
3π

2
+ 2nπ

¶
= −1 for any in-

teger n is abs min

(b) f(0) = 0 is abs min; f(π/4) =√
2

2
is abs max

(c) f(π/2) = 1 is abs max; there is
no abs min, which would occur
at both endpoints (not included
in the interval).

4. (a) The function has no absolute ex-
trema.

(b) The absolute minimum is −1
which occurs at x = 1 and x =
−2. The absolute maximum is
3 which occurs at x = −1 and
x = 2.
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(c) On (0, 2) the minimum is f(1) =
−1, and the function has no
maxima. The maxima would be
at the right endpoint (not in-
cluded in this interval).

5. f(x) = x2 + 5x− 1
f 0(x) = 2x+ 5
2x+ 5 = 0
x = −5/2 is a critical number. This
is a parabola opening upward, so we
have a minimum.

6. f(x) = −x2 + 4x+ 2
f 0(x) = −4x+ 4 = 0 when x = 1.
This is a parabola opening downward,
so we have a maximum.

7. f(x) = x3 − 3x+ 1
f 0(x) = 3x2 − 3
3x2 − 3 = 3(x2 − 1)

= 3(x+ 1)(x− 1) = 0
x = ±1 are critical numbers.
This is a cubic with a positive leading
coefficient so x = −1 is a local max,
x = 1 is a local min.

8. f(x) = −x3 + 6x2 + 2
f 0(x) = −3x2+12x = −3x(x+4) = 0
when x = 0 and x = −4.
This is a cubic with a positive leading
coefficient so x = 0 is a local max and
x = −4 is a local min.

9. f(x) = x3 − 3x2 + 6x
f 0(x) = 3x2 − 6x+ 6
3x2 − 6x+ 6 = 3(x2 − 2x+ 2) = 0
We can use the quadratic formula to
find the roots, which are x = 1±√−1.
These are imaginary so there are no
real critical numbers.

10. f(x) = x3 − 3x2 + 3x
f 0(x) = 3x2 − 6x+ 3 = 3(x− 1)2 = 0
when x = 1. Since f(x) is a cubic
with only one critical number, it is
neither a local min nor max.

11. f(x) = x4 − 3x3 + 2
f 0(x) = 4x3 − 9x2
4x3 − 9x2 = x2(4x− 9) = 0
x = 0, 9/4 are critical numbers
x = 9/4 is a local min; x = 0 is nei-
ther a local max nor min.

12. f(x) = x4 + 6x2 − 2
f 0(x) = 4x3 + 12x = 0 when x = 0
(minimum).

13. f(x) = x3/4 − 4x1/4
f 0(x) =

3

4x1/4
− 1

x3/4
If x 6= 0, f 0(x) = 0 when 3x3/4 =
4x1/4 x = 0, 16/9 are critical numbers.
x = 16/9 is a local min, x = 0 is nei-
ther a local max nor min.

14. f(x) = (x2/5 − 3x1/5)2
f 0(x) = 2(x2/5−3x1/5)

µ
2

5x3/5
− 3

5x4/5

¶
f 0(x) = 0 when x = 35 (minimum)
and x = (3

2
)5 (maximum). f 0(x) is

undefined when x = 0 (minimum).

15. f(x) = sinx cosx on [0, 2π]
f 0(x) = cosx cosx+ sinx(− sinx)

= cos2 x− sin2 x

cos2 x− sin2 x = 0
cos2 x = sin2 x
cosx = ± sinx

x = π/4, 3π/4, 5π/4, 7π/4 are critical
numbers.
x = π/4, 5π/4 are local max, x =
3π/4, 7π/4 are local min.

16. f(x) =
√
3 sinx+ cosx

f 0(x) =
√
3 cosx − sinx = 0 when

tan(x) =
√
3 or x = π/3 + kπ for

any integer k (maxima for even k and
minima for odd k).
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17. f(x) =
x2 − 2
x+ 2

Note that x = −2 is not in the do-
main of f .

f 0(x) =
(2x)(x+ 2)− (x2 − 2)(1)

(x+ 2)2

=
2x2 + 4x− x2 + 2

(x+ 2)2

=
x2 + 4x+ 2

(x+ 2)

f 0(x) = 0 when x2+4x+2 = 0, so the
critical numbers are x = −2±√2.
x = −2 + √2 is a local min; x =
−2 +√2 is a local max.

18. f(x) =
x2 − x+ 4

x− 1
f 0(x) =

(x− 1)(2x− 1)− (x2 − x+ 4)

(x− 1)2
=
(x− 3)(x+ 1)
(x− 1)2 = 0

when x = −1 (maximum) and x = 3
(minimum). f 0(x) is undefined when
x = 1 (not in domain of f).

19. f(x) =
x

x2 + 1

f 0(x) =
1(x2 + 1)− x(2x)

(x2 + 1)2

=
x2 + 1− 2x2
(x2 + 1)2

=
1− x2

(x2 + 1)2

f 0(x) = 0 for 1 − x2 = 0, x = 1,−1;
f 0(x) is defined for all x, so x = 1,−1
are the critical numbers.
x = −1 is local min, x = 1 is local
max.

20. f(x) =
3x

x2 − 1
f 0(x) =

(x2 − 1)3− 3x(2x)
(x2 − 1)2

=
−3(x2 + 1)
(x2 − 1)2 6= 0 for any x.

f 0(x) is undefined when x = ±1 (not
in domain of f).

21. f(x) =
ex + e−x

2

f 0(x) =
ex − e−x

2
f 0(x) = 0 when ex = e−x, that is,
x = 0.
f 0(x) is defined for all x, so x = 0 is a
critical number.
x = 0 is a local min.

22. f(x) = xe−2x

f 0(x) = e−2x−2xe−2x = 0 when x = 1
2

(maximum).

23. f(x) = x4/3 + 4x1/3 + 4x−2/3

f is not defined at x = 0.
f 0(x) = 4

3
x1/3 + 4

3
x−2/3 − 8

3
x−5/3

= 4
3
x−5/3(x2 + x− 2)

= 4
3
x−5/3(x− 1)(x+ 2)

x = −2, 1 are critical numbers.
x = −2 and x = 1 are local minima.

24. f(x) = x7/3 − 28x1/3
f 0(x) = 7

3
x4/3 − 28

3
x−2/3 = 0 when

x = −2 (maximum) and x = 2 (min-
imum).
f 0(x) is undefined at x = 0 (neither)

25. f(x) = 2x
√
x+ 1 = 2x(x+ 1)1/2

Domain of f is all x ≥ −1.
f 0(x) = 2(x+1)1/2+2x

µ
1

2
(x+ 1)−1/2

¶
=
2(x+ 1) + x√

x+ 1

=
3x+ 2√
x+ 1

f 0(x) = 0 for 3x+ 2 = 0, x = −2/3.
f 0(x) is undefined for

√
x+ 1 = 0,

x = −1 so x = −2/3,−1 are critical
numbers.
x = −2/3 is a local min. x = −1 is an
endpoint so is neither a local min nor
a local max, though it is a maximum
on the interval [−1, 0).
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26. f(x) =
x√

x2 + 1

f 0(x) =

√
x2 + 1− x2√

x2+1

x2 + 1

=
1

(x2 + 1)3/2
6= 0 for any x,

and is not undefined for any x.

27. Because of the absolute value sign,
there may be critical numbers where
the function x2−1 changes sign; that
is, at x = ±1. For x > 1 and for
x < −1, f(x) = x2−1 and f 0(x) = 2x,
so there are no critical numbers on
these intervals. For −1 < x < 1,
f(x) = 1 − x2 and f 0(x) = −2x, so
0 is a critical number. A graph con-
firms this analysis and shows there is
a local max at x = 0 and local min at
x = ±1.

28. f(x) =
3
√
x3 − 3x2 + 2x

f 0(x) =
1

3
(x3 − 3x2 + 2x)−2/3(3x2 − 6x+ 2)

=
3x2 − 6x+ 2

3x2/3((x− 2)(x− 1))2/3

f 0(x) = 0 when x =
3±√3
3

and f 0(x)

is undefined at x = 0, x = 2 and

x = 1. x =
3−√3
3

is a local max

and x =
3 +
√
3

3
is a local min.

29. First, let’s find the critical numbers
for x < 0. In this case,
f(x) = x2 + 2x− 1
f 0(x) = 2x+ 2 = 2(x+ 1)
so the only critical number in this in-
terval is x = −1 and it is a local min-
imum.
Now for x > 0,
f(x) = x2 − 4x+ 3
f 0(x) = 2x− 4 = 2(x− 2)
so the only critical number is x = 2
and it is a local minimum.

Finally, x = 0 is also a critical num-
ber, since f is not continuous and
hence not differentiable at x = 0. In-
deed, x = 0 is a local maximum.

30. f 0(x) = cosx for −π < x < π, and
f 0(x) = − sec2 x for |x| ≥ π.
f 0(x) = 0 for x = −π/2 (minimum)
and x = π/2 (maximum). f 0(x) is un-
defined for x = (2k + 1)π

2
for integers

k 6= −1 or 0 (not in domain of f).

31. f(x) = x3 − 3x+ 1
f 0(x) = 3x2 − 3 = 3(x2 − 1)
f 0(x) = 0 for x = ±1.

(a) On [0, 2], 1 is the only critical
number. We calculate:
f(0) = 1
f(1) = −1 is the abs min.
f(2) = 3 is the abs max.

(b) On the interval [−3, 2], we have
both 1 and −1 as critical num-
bers. We calculate:
f(−3) = −17 is the abs min.
f(−1) = 3 is the abs max.
f(1) = −1
f(2) = 3 is also the abs max.

32. f(x) = x4 − 8x2 + 2
f 0(x) = 4x3 − 16x = 0 when x = 0
and x = ±2.

(a) On [−3, 1]:
f(−3) = 11, f(−2) = −14,
f(0) = 2, and f(1) = −5.
The abs min on this interval is
f(−2) = −14 and the abs max
is f(−3) = 11.

(b) On [−1, 3]:
f(−1) = −5, f(2) = −14, and
f(3) = 11.
The abs min on this interval is
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f(2) = −14 and the abs max is
f(3) = 11.

33. f(x) = x2/3

f 0(x) = 2
3
x−1/3 = 2

3 3
√
x

f 0(x) 6= 0 for any x, but f 0(x) unde-
fined for x = 0, so x = 0 is critical
number.

(a) On [−4,−2]:
0 6∈ [−4,−2] so we only look at
endpoints.
f(−4) = 3

√
16 ≈ 2.52

f(−2) = 3
√
4 ≈ 1.59

So f(−4) = 3
√
16 is the abs max

and f(−2) = 3
√
4 is the abs min.

(b) On [−1, 3], we have 0 as a criti-
cal number.
f(−1) = 1
f(0) = 0 is the abs min.
f(3) = 32/3 is the abs max.

34. f(x) = sinx+ cosx
f 0(x) = cosx − sinx = 0 when x =
π
4
+ kπ for integers k.

(a) On [0, 2π]:
f(0) = 1, f(π/4) =

√
2,

f(5π/4) = −√2, and f(2π) = 1.
The abs min on this interval is
f(5π/4) = −√2 and the abs
max is f(π/4) =

√
2.

(b) On [π/2, π]:
f(π/2) = 1, f(π) = −1.
The abs min on this interval is
f(π) = −1 and the abs max is
f(π/2) = 1.

35. f(x) = e−x
2

f 0(x) = −2xe−x2
Hence x = 0 is the only critical num-
ber.

(a) On [0, 2]:
f(0) = 1 is the abs max.
f(2) = e−4 is the abs min.

(b) On [−3, 2]:
f(−3) = e−9 is the abs min.
f(0) = 1 is the abs max.
f(2) = e−4

36. f(x) = x2e−4x

f 0(x) = 2xe−4x − 4x2e−4x = 0 when
x = 0 and x = 1/2.

(a) On [−2, 0]:
f(−2) = 4e8, f(0) = 0.
The abs min is f(0) = 0 and the
abs max is f(−2) = 4e8.

(b) On [0, 4]:
f(1/2) = e−2/4, f(4) = 16e−16.
The abs min is f(0) = 0 and the
abs max is f(1/2) = e−2/4.

37. f(x) =
3x2

x− 3
Note that x = 3 is not in the domain
of f .

f 0(x) =
6x(x− 3)− 3x2(1)

(x− 3)2
=
6x2 − 18x− 3x2

(x− 3)2
=
3x2 − 18x
(x− 3)2

=
3x(x− 6)
(x− 3)2

The critical points are x = 0, x = 6.

(a) On [−2, 2]:
f(−2) = −12/5
f(2) = −12
f(0) = 0
Hence abs max is f(0) = 0 and
abs min is f(2) = −12.

(b) On [2, 8], the function is not con-
tinuous and in fact has no abso-
lute max or min.

38. f(x) = tan−1(x2)
f 0(x) = 2x

1+x4
= 0 when x = 0.

(a) On [0, 1]:
f(0) = 0 and f(1) = π/4.
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The abs min is f(0) = 0 and the
abs max is f(1) = π/4.

(b) On [−3, 4]:
f(−3) ≈ 1.46, f(0) = 0, and
f(4) ≈ 1.51.
The abs min is f(0) = 0 and the
abs max is f(4) = tan−1 16.

39. f 0(x) = 4x3 − 6x + 2 = 0 at about
x = 0.3660, −1.3660 and at x = 1.
(a) f(−1) = 3, f(1) = 1.

The absolute min is (−1, 3) and
the absolute max is approxi-
mately (0.3660, 1.3481).

(b) The absolute min is approxi-
mately (−1.3660,−3.8481) and
the absolute max is (−3, 49).

40. f 0(x) = 6x5 − 12x − 2 = 0 at about
−1.3673, −0.5860 and 1.4522.
(a) f(−1) = 1, f(1) = −3.

f(−0.5860) = 1.8587.
The absolute min is f(1) = −3
and the absolute max is approx-
imately f(−0.5860) = 1.8587.

(b) f(−2) = 21 and f(2) =
13. f(−1.3673) = −.2165 and
f(1.4522) = −5.8675.
The absolute min is approxi-
mately f(1.4522) = −5.8675
and the absolute max is f(−2) =
21.

41. f 0(x) = 2x − 3 cosx + 3x sinx = 0
at about x = 0.6371, −1.2269 and
−2.8051.
(a) The absolute min is approx-

imately (0.6371,−1.1305) and
the absolute max is approxi-
mately (−1.2269, 2.7463).

(b) The absolute min is approxi-
mately (−2.8051,−0.0748) and

the absolute max is approxi-
mately (−5, 29.2549).

42. f 0(x) = ecos 2x − 2x(sin 2x)ecos 2x =
0 at approximately x = −1.3863,
−0.5571, 0.5571, 1.3863, x = 3.2196
and 4.6586.

(a) f(−2) ≈ −1.0403 and f(2) ≈
1.0403. f(x) evaluated at these
values are not the absolute ex-
trema. The absolute min is
f(−2) ≈ −1.0403 and the abso-
lute max is f(2) ≈ 1.0403.

(b) f(2) ≈ 1.0403 and f(5) ≈
2.1606.
f(3.2196) = 8.6461 and
f(4.6586) = 1.7237.
The absolute min is f(2) ≈
1.0403 and the absolute max
is approximately f(3.2196) =
8.6461.

43. f 0(x) = sinx + x cosx = 0 at x = 0
and about 2.0288 and 4.9132.

(a) The absolute min is (0, 3)
and the absolute max is
(±π/2, 3 + π/2).

(b) The absolute min is approxi-
mately (4.9132,−1.814) and the
absolute max is approximately
(2.0288, 4.820).

44. f 0(x) = 2x+ ex = 0 at approximately
x = −0.3517.
(a) f(0) = 1 and f(1) = 1 + e ≈

3.71828. f 0(x) 6= 0 on this in-
terval, so the absolute min is
f(0) = 1 and the absolute max
is f(1) = 1 + e ≈ 3.71828.

(b) f(−2) ≈ 4.1353 and f(2) ≈
11.3891. f(−0.3517) = 0.8272.
The absolute min is approxi-
mately f(−0.3517) = 0.8272
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and the absolute max is approx-
imately f(2) = 11.3891.

45. If an absolute max or min occurs only
at the endpoint of a closed interval,
then there will be no absolute max or
min on the open interval.

31) on (0, 2), f(1) = −1 is min, no
max.
on (−3, 2), f(−1) = 3 is max, no min.
32) on (−3, 1), f(−2) = −14 is min,
no max.
on (−1, 3), f(2) = −14 is min, no
max.

33) on (−4,−2), no max or min.
on (−1, 3), f(0) = 0 is min, no max.
34) on (0, 2π), f(5π/4) = −√2 is
min, f(π/4) =

√
2 is max.

on (π/2, π), no max or min.

35) on (0, 2), no max or min
on (−3, 2), f(0) = 1 is max; no min
36) on (−2, 0), no min or max.
on (0, 4), f(1/2) = e−2/4 is max, no
min.

37) on (−2, 2), f(0) = 0 is max; no
min
on (2, 8), no max or min

38) on (0, 1), no min or max.
on (−3, 4), no max, f(0) = 0 is min.

46. To find extrema in the open interval
(a, b), or the half-open intervals (a, b]
or [a, b), look at the graph to get an
idea of where the extrema will be lo-
cated, or if they exist. Evaluate the
function at the critical points, and the
included endpoints (if any). These
are the only places extrema can ex-
ist.

47. On [−2, 2], the absolute maximum is
3 and the absolute minimum doesn’t

exist.

y

4

2

0

-2

-4

x

210-1-2

48. On (−2, 2) minimum is 2 and the
maximum does not exist. (The max-
imum would exist at the endpoints
which are not included in the inter-
val.)

2

1

0

x

210-1-2

y

6

5

4

3

49. On (−2, 2) the absolute maximum is
4 and the absolute minimum is 2.

y

5

4

3

2

1

0

x

210-1-2

50. Absolute extrema do not exist be-
cause of the vertical asymptote.
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y

x

10

2

5

0
1

-5

-10

0-1-2

51. You will not be able to construct an
example with a continuous function,
but there are many examples using a
function with a discontinuity, for ex-
ample f(x) = sec2 x.

52. f(p) = pm(1− p)n−m

f 0(p) = mpm−1(1− p)n−m

− pm(n−m)(1− p)n−m−1

To find the critical numbers, we set
f 0(p) = 0 which gives
mpm−1(1− p)n−m

− pm(n−m)(1− p)n−m−1 = 0
mpm−1(1− p)n−m

= pm(n−m)(1− p)n−m−1

m(1− p) = p(n−m)
m−mp = pn− pm
p = m/n.
Since this is the only critical number,
f(p) is continuous, f(0) = f(1) = 0
and f(m/n) > 0, p = m/nmust max-
imize f(p).

53. f(x) = x3 + cx+ 1
f 0(x) = 3x2 + c
We know (perhaps from a pre-
calculus course) that for any cubic
polynomial with positive leading co-
efficient, when x is large and positive
the value of the polynomial is very
large and positive, and when x is large
and negative, the value of the polyno-
mial is very large and negative.

Type 1: c > 0. There are no critical
numbers. As you move from left to

right, the graph of f is always rising.

Type 2: c < 0 There are two critical
numbers x = ±p−c/3. As you move
from left to right, the graph rises un-
til we get to the first critical num-
ber, then the graph must fall until
we get to the second critical number,
and then the graph rises again. So the
critical number on the left is a local
maximum and the critical number on
the right is a local minimum.

Type 3: c = 0. There is only one crit-
ical number, which is neither a local
max nor a local min.

54. The derivative of a fourth-order poly-
nomial is a cubic polynomial. We
know that cubic polynomials must
have one root, and can have up to
three roots. If p(x) is a fourth-order
polynomial, we know that

lim
x→∞

p(x) = lim
x→−∞

p(x) =∞

if the coefficient of x4 is positive, and
is −∞ if the coefficient of x4 is neg-
ative. This guarantees that at least
one of the critical numbers will be an
extremum.

2

4

1

x

8

12

0
-1 0-2
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3.2

3

2.8

2.6

2.4

2.2

2

x

21.510.50-0.5-1

1

0

x

210-1-2

6

5

4

3

2

-1

55. f(x) = x3 + bx2 + cx+ d
f 0(x) = 3x2 + 2bx+ c
The quadratic formula says that the
critical numbers are

x =
−2b±√4b2 − 12c

6

=
−b±√b2 − 3c

3
.

So if c < 0, the quantity under the
square root is positive and there are
two critical numbers. This is like the
Type 2 cubics in Exercise 53. We
know that as x goes to infinity, the
polynomial x3+bx2+cx+d gets very
large and positive, and when x goes
to minus infinity, the polynomial is
very large but negative. Therefore,
the critical number on the left must
be a local max, and the critical num-
ber on the right must be a local min.

56. f 0(x) = 3x2 + 2bx + c = 0 when x =
−2b±√4b2 − 12c

6
. Adding these val-

ues together yields −2b/3.

57. f(x) = x4 + cx2 + 1
f 0(x) = 4x3 + 2cx = 2x(2x2 + c)
So x = 0 is always a critical number.

Case 1: c ≥ 0. The only solution
to 2x(2x2 + c) = 0 is x = 0, so
x = 0 is the only critical number.
This must be a minimum, since we
know that the function x4+ cx2+1 is
large and positive when |x| is large (so
the graph is roughly U-shaped). We
could also note that f(0) = 1, and 1 is
clearly the absolute minimum of this
function if c ≥ 0.
Case 2: c < 0. Then there are two
other critical numbers x = ±

p
−c/2.

Now f(0) is still equal to 1, but the
value of f at both new critical num-
bers is less than 1. Hence f(0) is a
local max, and both new critical num-
bers are local minimums.

58. f 0(x) = 4x3 + 3cx2 = 0 when x = 0
and x = −3c/4. Only x = −3c/4
will be an extreme point (an absolute
minimum). x = 0 will be an inflection
point.

59. With t = 90 and r = 1/30, we have

P (n) =
3n

n!
e−3.

We compute P for the first few values
of n:

n P

0 e−3

1 3e−3

2 4.5e−3

3 4.5e−3

4 3.375e−3

Once n > 3, the values of P will de-
crease as n increases. This is due to
the fact that to get P (n + 1) from
P (n), we multiply P (n) by 3/(n+1).
Since n > 3, 3/(n + 1) < 1 and
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so P (n + 1) < P (n). Thus we see
from the table that P is maximized at
n = 3 (it is also maximized at n = 2).
It makes sense that P would be max-
imized at n = 3 because

(90 mins)

µ
1

30
goals/min

¶
= 3 goals.

60. With r = 1/30 and n = 1 we have

P (t) =
t

30
e−t/30.

To maximize P (t), we take the deriva-
tive and set it equal to 0:

P 0(t) =
1

30
e−t/30 +

t

30
e−t/30

−1
30

= e−t/30
µ
1

30
− t

900

¶
Since e−t/30 is never 0, we see that
P 0(t) = 0 only when t = 30. This
makes sense since

(30 mins)

µ
1

30
goals/min

¶
= 1 goal.

61. Since f is differentiable on (a, b), it
is continuous on the same interval.
Since f is decreasing at a and increas-
ing at b, f must have a local minimum
for some value c, where a < c < b.
By Fermat’s theorem, c is a critical
number for f . Since f is differen-
tiable at c, f 0(c) exists, and therefore
f 0(c) = 0.

62. Graph of f(x) = x2 + 1 and g(x) =

lnx:

-4

x

420-2-4
y

4

2

0

-2

h(x) = f(x)− g(x) = x2 + 1− lnx
h0(x) = 2x− 1/x = 0
2x2 = 1
x = ±p1/2
x =

p
1/2 is min

f 0(x) = 2x
g0(x) = 1/x

f 0
³p

1/2
´
= 2

p
1/2 =

√
2

g0
³p

1/2
´
= 1√

1/2
=
√
2

So the tangents are parallel. If the
tangent lines were not parallel, then
they would be getting closer together
in one direction. Since the tangent
lines approximate the curves, this
should mean the curves are also get-
ting closer together in that direction.

63. Graph of f(x) =
x2

x2 + 1
:

0.6

0.8

0.2

0.4

0

x

543210

f 0(x) =
2x(x2 + 1)− x2(2x)

(x2 + 1)2

=
2x

(x2 + 1)2

f 00(x) =
2(x2 + 1)2 − 2x · 2(x2 + 1) · 2x

(x2 + 1)4

=
2(x2 + 1) [(x2 + 1)− 4x2]

(x2 + 1)4

=
2 [1− 3x2]
(x2 + 1)3

f 00(x) = 0 for x = ± 1√
3
,

x = − 1√
3
/∈ (0,∞)



3.3 MAXIMUM AND MINIMUM VALUES 191

x =
1√
3
is steepest point.

64. Graph of f(x) = e−x
2
:

1

0.8

0.6

0.4

0.2

0

x

210-1-2

f(x) is steepest where f 0(x) =
−2xe−x2 is maximum.
f 00(x) = −2e−x2 + 4x2e−x2 = 0 when
x = ±√2/2. This is where f(x) is
steepest.

65. y = x5 − 4x3 − x+ 10, x ∈ [−2, 2]
y0 = 5x4 − 12x2 − 1
x = −1.575, 1.575 are critical num-
bers of y. There is a local max at
x = −1.575, local min at x = 1.575.
x = −1.575 represents the top and
x = 1.575 represents the bottom of
the roller coaster.
y00(x) = 20x3−24x = 4x(5x2−6) = 0
x = 0, ±p6/5 are critical numbers
of y0. We calculate y0 at the crit-
ical numbers and at the endpoints
x = ±2:
y0(0) = −1
y0
³
±p6/5´ = −41/5

y0 (±2) = 31
So the points where the roller coaster
is making the steepest descent are
x = ±p6/5, but the steepest part of
the roller coast is during the ascents
at ±2.

66. To maximize entropy, we find the crit-
ical numbers of H.
H 0(x) = − lnx−1+ ln(1−x)+1 = 0

where lnx = ln(1 − x), or where
x = 1 − x. That is x = 1/2. This
maximizes unpredictablility since for
this value, errors and non-errors are
equally likely.

67. W (t) = a · e−be−t
as t→∞,−be−t → 0, so W (t)→ a.
W 0(t) = a · e−be−t · be−t
as t→∞, be−t → 0, so W 0(t)→ 0.
W 00(t) = (a · e−be−t · be−t) · be−t

+ (a · e−be−t) · (−be−t)
= a · e−be−t · be−t [be−t − 1]

W 00(t) = 0 when be−t = 1
e−t = b−1

− t = ln b−1

t = ln b
W 0(ln b) = a · e−be− ln b · be− ln b

= a · e−b( 1b) · b · 1
b
= ae−1

Maximum growth rate is ae−1 when
t = ln b.

68. R0([S]) =
(Km + [S])Rm − [S]Rm

(Km + [S])2
6=

0.

The function doesn’t have a true max-
imum, but lim

[S]→∞
R = Rm. The rate

of reaction approaches Rm but never
reaches it.

69. Label the triangles as illustrated.

x

A

B

2

1

tan(A+B) = 3/x
A+B = tan−1 (3/x)

tanB = 1/x
B = tan−1(1/x)
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Therefore,
A = (A+B)−B
A = tan−1 (3/x)− tan−1 (1/x)
dA

dx
=
−3/x2

1 + (3/x)2
− −1/x2
1 + (1/x)2

=
1

x2 + 1
− 3

x2 + 9
The maximum viewing angle will oc-
cur at a critical value.
dA

dx
= 0

1

x2 + 1
=

3

x2 + 9
x2 + 9 = 3x2 + 3
2x2 = 6
x2 = 3
x =
√
3 ft ≈ 1.73 ft

This is a maximum because when x
is large and when x is a little bigger
than 0, the angle is small.

70. If the person’s eyes are at 6 feet,
then the angle A is given by A =
tan−1(2/x).

A0(x) =
−2
x2
· 1

1 + (2/x)2
6= 0

The angle approaches a maximum of
π/2 as x approaches 0.

3.4 Increasing and

Decreasing

Functions

1. y = x3 − 3x+ 2
y0 = 3x2 − 3 = 3(x2 − 1)
= 3(x+ 1)(x− 1)

x = ±1 are critical numbers.
(x + 1) > 0 on (−1,∞), (x + 1) < 0
on (−∞,−1)
(x− 1) > 0 on (1,∞), (x− 1) < 0 on
(−∞,−1)
3(x + 1)(x − 1) > 0 on (1,∞) ∪

(−∞,−1) so y is increasing on (1,∞)
and on (−∞,−1)
3(x+1)(x− 1) < 0 on (−1, 1), so y is
decreasing on (−1, 1).

y

40

20

0

-20

-40

x

420-2-4

2. y = x3 + 2x2 + 1
y0 = 3x2 + 4x = x(3x+ 4)
The function is increasing when x <
−4
3
, decreasing when −4

3
< x < 0,

and increasing when x > 0.

x

10.5

4

3

0

2

1

-0.5
0

-1

-1

-2

-1.5-2-2.5

3. y = x4 − 8x2 + 1
y0 = 4x3 − 16x = 4x(x2 − 4)
= 4x(x− 2)(x+ 2)

x = 0, 2,−2

4x > 0 on (0,∞), 4x < 0 on (−∞, 0)
(x− 2) > 0 on (2,∞), (x− 2) < 0 on
(−∞, 2)
(x + 2) > 0 on (−2,∞), (x + 2) < 0
on (−∞,−2)
4(x − 2)(x + 2) > 0 on (−2, 0) ∪
(2,∞), so the function is increasing
on (−2, 0) and on (2,∞).
4(x − 2)(x + 2) < 0 on (−∞,−2) ∪
(0, 2), so y is decreasing on (−∞,−2)
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and on (0, 2).

y

40

20

0

-20

-40

x

420-2-4

4. y = x3 − 3x2 − 9x+ 1
y0 = 3x2 − 6x− 9 = 3(x− 3)(x+ 1).
The function is increasing when x <
−1, decreasing when−1 < x < 3, and
increasing when x > 3.

x

420-2

20

10

0

-10

-20

-30

-40

5. y = (x+ 1)2/3

y0 =
2

3
(x+ 1)−1/3 =

2

3 3
√
x+ 1

y0 is not defined for x = −1
2

3 3
√
x+ 1

> 0 on (−1,∞), y is in-
creasing

2

3 3
√
x+ 1

< 0 on (−∞,−1), y is de-
creasing

x

420-2-4

y

4

3

2

1

0

-1

6. y = (x− 1)1/3
y0 = 1

3
(x− 1)−2/3.

The function is increasing for all x.
The slope approaches vertical as x ap-
proaches 1.

x

420-2

1.5

1

0.5

0

-0.5

-1

-1.5

7. y = sinx+ cosx
y0 = cosx− sinx = 0
cosx = sinx
x = π/4, 5π/4, 9π/4, etc. cosx −
sinx > 0 on (−3π/4, π/4) ∪
(5π/4, 9π/4) ∪ . . .
cosx − sinx < 0 on (π/4, 5π/4) ∪
(9π/4, 13π/4) ∪ . . .
So y = sinx+ cosx is decreasing on
(π/4, 5π/4) , (9π/4, 13π/4),
etc., and is increasing on
(−3π/4, π/4) , (5π/4, 9π/4), etc.
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y

3

2

1

0

-1

-2

-3

x

1050-5-10

8. y = sin2 x
y0 = 2 sinx cosx.
The function is increasing for 0 < x <
π
2
, and decreasing for

π
2
< x < π, and this pattern repeats

with period π.

0.6

0.4

0.2

x

0
420-2

1

0.8

9. y = ex
2−1

y0 = ex
2−1 · 2x = 2xex2−1

x = 0

2xex
2−1 > 0 on (0,∞), y is increasing

2xex
2−1 < 0 on (−∞, 0), y is decreas-

ing

y

10

8

6

4

2

0

x

210-1-2

10. y = ln(x2 − 1)

y0 = 2x
x2−1 .

The function is defined for |x| > 1.
The function is decreasing for x < −1
and increasing for x > 1.

2

-4
0

-2

-2

-4

x

420

11. y = x4 + 4x3 − 2
y0 = 4x3 + 12x2 = 4x2(x+ 3)
Critical numbers are x = 0, x = −3.
4x2(x+ 3) > 0 on (−3, 0) ∪ (0,∞)
4x2(x+ 3) < 0 on (−∞,−3)
Hence x = −3 is a local minimum and
x = 0 is not an extremum.

12. y = x5 − 5x2 + 1
y0 = 5x4 − 10x = 5x(x3 − 2).
At x = 0 the slope changes from
positive to negative indicating a lo-
cal maximum. At x = 3

√
2 the slope

changes from negative to positive in-
dicating a local minimum.

13. y = xe−2x

y0 = 1 · e−2x + x · e−2x(−2)
= e−2x − 2xe−2x
= e−2x(1− 2x)

x = 1
2

e−2x(1− 2x) > 0 on (−∞, 1/2)
e−2x(1− 2x) < 0 on (1/2,∞)
So y = xe−2x has a local maximum at
x = 1/2.

14. y = x2e−x

y0 = 2xe−x − x2e−x = xe−x(2− x).
At x = 0 the slope changes from nega-
tive to positive indicating a local min-
imum. At x = 2 the slope changes
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from positive to negative indicating a
local maximum.

15. y = tan−1(x2)

y0 =
2x

1 + x4

Critical number is x = 0.
2x

1 + x4
> 0 for x > 0

2x

1 + x4
< 0 for x < 0.

Hence x = 0 is a local minimum.

16. y = sin−1
µ
1− 1

x2

¶
y0 =

2

x3
· 1q

1− (1− 1
x2
)2
.

The derivative is never 0 and is de-
fined where the function is defined, so
there are no critical points.

17. y =
x

1 + x3

Note that the function is not defined
for x = −1.
y0 =

1(1 + x3)− x(3x2)

(1 + x3)

=
1 + x3 − 3x3
(1 + x3)2

=
1− 2x3
(1 + x3)2

Critical number is x = 3
p
1/2

y0 > 0 on (−∞,−1) ∪ (−1,− 3
p
1/2)

y0 < 0 on ( 3
p
1/2,∞)

Hence x = 3
p
1/2 is a local max.

18. y =
x

1 + x4

y0 =
(1 + x4)− 4x4
(1 + x4)2

=
1− 3x4
(1 + x4)2

.

At x = − 4
p
1/3 the slope changes

from negative to positive indicating a
local minimum. At x = 4

p
1/3 the

slope changes from positive to nega-
tive incicating a local maximum.

19. y =
√
x3 + 3x2 = (x3 + 3x2)1/2

Domain is all x ≥ −3.
y0 =

1

2
(x3 + 3x2)−1/2(3x2 + 6x)

=
3x2 + 6x

2
√
x3 + 3x2

=
3x(x+ 2)

2
√
x3 + 3x2

x = 0,−2,−3 are critical numbers.
y0 undefined at x = 0,−3
y0 > 0 on (−3,−2) ∪ (0,∞)
y0 < 0 on (−2, 0)
So y =

√
x3 + 3x2 has local max at

x = −2, local min at x = 0. x = −3
is an endpoint, and so is not a local
extremum.

20. y = x4/3 + 4x1/3

y0 =
4

3
x1/3 +

4

3x2/3
=
4

3
· x+ 1
x2/3

.

At x = −1 the slope changes from
negative to positive indicating a local
minimum. At x = 0 the slope is ver-
tical and is positive on both sides, so
this is neither a minimum nor a max-
imum.

21. y =
x

x2 − 1
y0 =

x2 − 1− x(2x)

(x2 − 1)2
= − x2 + 1

(x2 − 1)2
There are no values of x for which
y0 = 0. There are no critical points,
because the values for which y0 does
not exist (that is, x = ±1) are not in
the domain.

There are vertical asymptotes at x =
±1, and a horizontal asymptote at
y = 0. This can be verified by cal-
culating the following limits:

lim
x→±∞

x

x2 − 1 = 0
lim
x→−1

x

x2 − 1 =∞
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lim
x→1

x

x2 − 1 = −∞

y

10

5

0

-5

-10

x

210-1-2

22. y =
x2

x2 − 1 has vertical asymptotes
at x = ±1 and horizontal asymptote
y = 1.

y0 =
(x2 − 1)2x− 2x(x2)

(x2 − 1)2 =
−2x

(x2 − 1)2 .

At x = 0 the slope changes from
positive to negative indicating a local
maximum.

x

32

y

1

4

0

2

0
-1

-2

-4

-2-3

23. y =
x2

x2 − 4x+ 3 =
x2

(x− 1)(x− 3)
Vertical asymptotes x = 1, x = 3.
When |x| is large, the function ap-
proaches the value 1, so y = 1 is a
horizontal asymptote.

y0 =
2x(x2 − 4x+ 3)− x2(2x− 4)

(x2 − 4x+ 3)2
=
2x3 − 8x2 + 6x− 2x3 + 4x2

(x2 − 4x+ 3)2
=
−4x2 + 6x

(x2 − 4x+ 3)2

=
2x(−2x+ 3)
(x2 − 4x+ 3)2

=
2x(−2x+ 3)

[(x− 3)(x− 1)]2
Critical numbers are x = 0 (local
min) and x = 3/2 (local max).

0

-5

-10

x

1050-5-10
y

10

5

24. y =
x

1− x4
has vertical asymptotes

at x = ±1 and horizontal asymptote
y = 0.

y0 =
(1− x4) + 4x4

(1− x4)2
=

1 + 3x4

(1− x4)2
6= 0

for any x and is defined where the
function is defined.

x

32

y

1

4

0

2

0
-1

-2

-4

-2-3

25. y =
x√

x2 + 1

y0 =

√
x2 + 1− x2/

√
x2 + 1

x2 + 1

=
1

(x2 + 1)3/2

The derivative is never zero, so there
are no critical points. To verify that
there are horizontal asymptotes at
y = ±1:
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y =
x√

x2 + 1

=
x

√
x2
q
1 + 1

x2

=
x

|x|
q
1 + 1

x2

Thus,

lim
x→∞

x

|x|
q
1 + 1

x2

= 1

lim
x→−∞

x

|x|
q
1 + 1

x2

= −1

y

2

1

0

-1

-2

x

3210-1-2-3

26. y =
x2 + 2

(x+ 1)2
has a vertical asymptote

at x = −1, and a horizontal asymp-
tote at y = 1.

y0 =
2x(x+ 1)2 − (x2 + 2)2(x+ 1)

(x+ 1)4

=
2(x− 2)(x+ 1)

(x+ 1)4

x = 2 is the only critical number.
Since f 0(0) < 0 and f 0(3) > 0, we
see that f(2) is a local minimum.

y

x

6

6

5

4

4

3

2

2

1

0
0-2-4

27. y0 = 3x2 − 26x − 10 = 0 when

x =
26±√796

6
. Local max at x =

−0.3689; local min at x = 9.0356.

y

1000

500

0

-500

-1000

x

20151050-5-10

28. y0 = 3x2 + 30x − 70 = 0 when x =
−15±√435

3
. At x ≈ −11.9522 the

slope changes from positive to nega-
tive indicating a local maximum, and
at x ≈ 1.9522 the slope changes from
negative to positive indicating a local
minimum.

x

1050

1500

-5

1000

500

-10
0

-15

-500

-20

29. y0 = 4x3 − 45x2 − 4x+ 40
Local minima at x = −0.9474, 11.2599;
local max at 0.9374.
Local behavior near x = 0 looks like

y

6000

4000

2000

0

-2000

-4000

-6000

x

20151050-5-10
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Global behavior of the function looks
like

y

40

20

0

-20

-40

x

210-1-2

30. y0 = 4x3−48x2−0.2x+0.5 = 0 at ap-
proximately x = −0.1037 (local min-
imum), x = 0.1004 (local maximum),
and x = 12.003 (local minimum). Lo-
cal behavior near x = 0 looks like

0-0.2-0.4

0.5

0

-0.5

-1

-1.5

-2

-2.5

x

0.40.2

Global behavior of the function looks
like

2000

0

-2000

x

-4000

-6000

151050-5

31. y0 = 5x4 − 600x+ 605
Local minima at x = −1.0084, 10.9079;
local maxima at x = −10.9079, 1.0084.
Local behavior near x = 0 looks like

0-10-20
y

200000

100000

0

-100000

-200000

x

2010

Global behavior of the function looks
like

0

-200

-400

x

210-1-2
y

400

200

32. y0 = 4x3 − 1.5x2 − 0.04x + 0.02 = 0
at approximately x = −0.1121 (local
minimum), x = 0.1223 (local maxi-
mum), and x = 0.3648 (local mini-
mum).

x

0.60.40.20-0.2-0.4

1.12

1.08

1.04

1

33. y0 = (2x+ 1)e−2x

+ (x2 + x+ 0.45)(−2)e−2x
Local min at x = −0.2236; local max
at x = 0.2236. Local behavior near
x = 0 looks like
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y

200000

100000

0

-100000

-200000

x

420-2-4

Global behavior of the function looks
like

y

0.48

0.46

0.44

0.42

0.4

x

0.30.20.10-0.1-0.2-0.3

34. y0 = 5x4 ln(8x2) + x5 16x
8x2

= x4(5 ln(8x2) + 2) = 0 at approx-
imately x = ±0.2895 (a local max-
imum and local minimum). The
derivative and the function are un-
defined at x = 0, but the slope is
negative on both sides (neither a min-
imum nor a maximum). Locally, near
x = ±0.2895, the function looks like

0.002

0.001

0

-0.001

-0.002

x

0.40.20-0.2-0.4

Globally, the function looks like a
quintic

x

3210

500

-1

1000

-2

-500

0
-3

-1000

35. One possible graph:

y

10

5

0

-5

-10

x

43210-1-2

36. One possible graph:

x

43210

y

-1

5

-2

4

3

-3

2

1

0

37. One possible graph:

y

4

2

0

-2

-4

-6

-8

-10

x

1050-5-10

38. One possible graph:
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x

54

y

3

5

2

4

3

1

2

1

0
0

-1

39. The derivative is

y0 =
−3x4 + 120x3 − 1

(x4 − 1)2 .

We estimate the critical numbers to
be approximately 0.2031 and 39.999.
The following graph shows global be-
havior:

x

210-1-2
y

400

200

0

-200

-400

The following graphs show local be-
havior:

30.4

31.2

30.8

30

x

0.50.40.2 0.30 0.1

2E-6

4E-6

3E-6

1E-6

0E0

-1E-6

x

5045403530

40. The derivative is

y0 =
−2x5 + 32x3 − 2x

(x4 − 1)2 .

We estimate the critical numbers to
be approximately±0.251, ±3.992 and
x = 0.
The following graph shows global be-
havior:

8.15

8.05

x

0.40.20-0.4 -0.2

8.25

8.2

8.1

8

The following graphs show local be-
havior:

y

0.04

0.02

0

-0.02

-0.04

x

-2-2.5-3-3.5-4-4.5-5
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8.15

8.05

x

0.40.20-0.4 -0.2

8.25

8.2

8.1

8

41. The derivative is

y0 =
−x2 − 120x+ 1
(x2 + 1)2

.

We estimate the critical numbers
to be approximately 0.008 and
−120.008.
The following graph shows global be-
havior:

x

1050-5-10

y

100

80

60

40

20

0

The following graphs show local be-
havior:
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0.020.0150.005 0.010

42. The derivative is

y0 =
−x2 + 120x− 1
(x2 − 1)2 .

We estimate the critical numbers to
be approximately 0.008 and 119.992.
The following graph shows global be-
havior:
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y
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-200

-400

The following graphs show local be-
havior:
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x

20018016012010080 14060

0.004

0
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6.0002E1

5.9998E1

6.0004E1

6E1

5.9996E1

x

0.020.0150.005 0.010

43. f 0(0) = lim
x→0

f(x)− f(0)

x− 0
= lim

x→0
f(x)

x

= lim
x→0

∙
1 + 2x sin

µ
1

x

¶¸
= 1

For x 6= 0,
f 0(x) =

1+2

∙
2x sin

µ
1

x

¶
+ x2

µ−1
x2

¶
cos

µ
1

x

¶¸
= 1 + 4x sin

µ
1

x

¶
− 2 cos

µ
1

x

¶
For values of x close to the origin, the
middle term of the derivative is small,
and since the last term −2 cos(1/x)
reaches its minimum value of −2 in
every neighborhood of the origin, f 0

has negative values on every neigh-
borhood of the origin. Thus, f is
not increasing on any neighborhood
of the origin.

This conclusion does not contradict
Theorem 4.1 because the theorem
states that if a function’s derivative
is positive for all values in an inter-
val, then it is increasing in that inter-
val. In this example, the derivative is
not positive throughout any interval
containing the origin.

44. We have f 0(x) = 3x2, so f 0(x) > 0
for all x 6= 0, but f 0(0) = 0. Since
f 0(x) > 0 for all x 6= 0, we know f(x)
is increasing on any interval not con-
taining 0. We know that if x1 < 0

then x31 < 0 and if x2 > 0 then
x32 > 0. If x1 < 0 and x2 = 0
then x31 < 03 = 0, so f(x) is increas-
ing on intervals of the form (x1, 0).
Similarly, f(x) is increasing on inter-
vals of the form (0, x2). Finally, on
intervals of the form (x1, x2) where
x1 < 0 < x2, we have x31 < 0 < x32
so f(x) is again increasing on these
intervals. Thus f(x) is increasing on
any interval.

This does not contradict Theorem 4.1
because Theorem 4.1 is not an “if and
only if” statement. It says that if
f 0(x) > 0, then f is increasing (on
that interval) but it does not say that
if f 0(x) is not strictly positive that f
is not increasing.

45. f is continuous on [a, b], and c ∈ (a, b)
is a critical number.

(i) If f 0(x) > 0 for all x ∈ (a, c) and
f 0(x) < 0 for all x ∈ (c, b), by
Theorem 3.1, f is increasing on
(a, c) and decreasing on (c, b), so
f(c) > f(x) for all x ∈ (a, c) and
x ∈ (c, b). Thus f(c) is a local
max.

(ii) If f 0(x) < 0 for all x ∈ (a, c) and
f 0(x) > 0 for all x ∈ (c, b), by
Theorem 3.1, f is decreasing on
(a, c) and increasing on (c, b). So
f(c) < f(x) for all x ∈ (a, c) and
x ∈ (c, b). Thus f(c) is a local
min.

(iii) If f 0(x) > 0 on (a, c) and (c, b),
then f(c) > f(x) for all x ∈
(a, c) and f(c) < f(x) for all
x ∈ (c, b), so c is not a local ex-
tremum.

If f 0(x) < 0 on (a, c) and (c, b),
then f(c) < f(x) for all x ∈
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(a, c) and f(c) > f(x) for all
x ∈ (c, b), so c is not a local ex-
tremum.

46. If f(a) = g(a) and f 0(x) > g0(x) for
all x > a, then f(x) > g(x) for all
x > a. Graphically, this makes sense:
f and g start at the same place, but f
is increasing faster, therefore f should
be larger than g for all x > a.

To prove this, apply the Mean Value
Theorem to the function f(x)− g(x).
If x > a then there exists a number c
between a and x with
f 0(c)− g0(c)

=
(f(x)− g(x))− (f(a)− g(a))

x− a
.

Multiply by (x−a) (and recall f(a) =
g(a)) to get (x − a)(f 0(c) − g0(c)) =
f(x)− g(x). The lefthand side of this
equation is positive, therefore f(x) is
greater than g(x).

47. Let f(x) = 2
√
x, g(x) = 3− 1/x.

Then f(1) = 2
√
1 = 2, and g(1) =

3− 1 = 2, so f(1) = g(1).

f 0(x) =
1√
x

g0(x) =
1

x2
So f 0(x) > g0(x) for all x > 1, and

f(x) = 2
√
x > 3− 1

x
= g(x)

for all x > 1.

48. Let f(x) = x and g(x) = sinx.
Then f(0) = g(0). f 0(x) = 1. g0(x) =
cosx.
cosx ≤ 1 for all x, therefore exercise
46 implies that x > sinx for all x > 0.

49. Let f(x) = ex, g(x) = x+ 1.
Then f(0) = e0 = 1, g(0) = 0+1 = 1,
so f(0) = g(0).
f 0(x) = ex, g0(x) = 1
So f 0(x) > g0(x) for x > 0.

Thus f(x) = ex > x + 1 = g(x) for
x > 0.

50. Let f(x) = x− 1 and g(x) = lnx.
Then f(1) = g(1). f 0(x) = 1. g0(x) =
1
x
.
1/x ≤ 1 for all x > 1, therefore exer-
cise 46 implies that x − 1 > lnx for
all x > 1.

51. Let f(x) = 3 + e−x; then f(0) = 4,
f 0(x) = −e−x < 0, so f is decreas-
ing. But f(x) = 3 + e−x = 0 has no
solution.

52. Let y1 and y2 be two points in the
domain of f−1 with y1 < y2. Let
x1 = f−1(y1) and x2 = f−1(y2). We
want to show x1 < x2. Suppose not.
Then x2 ≤ x1. But then, since f is
increasing, f(x2) ≤ f(x1). That is
y2 ≤ y1, which contradicts our choice
of y1 and y2.

53. The domain of sin−1 x is the interval
[−1, 1]. The function is increasing on
the entire domain.

54. sin−1
µ
2

π
tan−1 x

¶
is defined for all x.

The derivative,

2

π(1 + x2)
q
1− ( 2

π
tan−1 x)2

> 0

for all x. The function is increasing
everywhere.

55. TRUE. If x1 < x2, then g(x1) <
g(x2) since g is increasing, and then
f(g(x1)) < f(g(x2)) since f is increas-
ing.

56. We can say that g(1) < g(4) and
g(f(1)) < g(f(4)), but it is not pos-
sible to determine the maximum and
minimum values without more infor-
mation.
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57. s(t) =
√
t+ 4 = (t+ 4)1/2

s0(t) =
1

2
(t+ 4)−1/2 =

1

2
√
t+ 4

> 0

So total sales are always increasing at

the rate of
1

2
√
t+ 4

thousand dollars

per month.

58. s0(t) =
1

2
√
t+ 4

> 0 for all t > 0.

If s represents the total sales so far,
then s cannot decrease. The rate of
new sales can decrease, but we cannot
lose sales that already have occurred.

59. If the roots of the derivative are very
close together, then the extrema will
be very close together and difficult to
see on a graph showing global behav-
ior of the function. One function with
the given derivative is

f(x) =
1

3
x3 − 0.01x+ 2

x

3210

8

-1

4

-2

-4

0
-3

The two extreme points near x = 0
are impossible to detect from the
graph using a usual scale.
To construct a degree 4 polynomial
with two hidden extrema near x = 1
and another extrema (not hidden)
near x = 0, we start with a deriva-
tive,
g0(x) = x(x− 0.9)(x− 1.1)

= x3 − 2x2 + 0.99x.
A function with this derivative is

g(x) =
1

4
x4 − 2

3
x3 +

0.99

2
x2 − 3

10-1-2

8

6

4

2

0

x
-2

32

60. TRUE. (f ◦ g)0 (c) = f 0(g(c))g0(c) =
0, since c is a critical number of g.

61. f(x) = x3 + bx2 + cx+ d
f 0(x) = 3x2 + 2bx+ c
f 0(x) ≥ 0 for all x if and only if
(2b)2 − 4(3)(c) ≤ 0
if and only if 4b2 ≤ 12c
if and only if b2 ≤ 3c.

62. f(x) = x5 + bx3 + cx+ d
f 0(x) = 5x4 + 3bx2 + c
Using the quadratic formula, we find

x2 =
−3b±√9b2 − 20c

10
.

Thus, if 9b2 < 20c, then the roots are
imaginary and so f 0(x) ≥ 0 for all x.
If this is not the case, then we need
to consider

x = ±
s
−3b±√9b2 − 20c

10
.

Now we need the expression inside the
square root to be less than or equal to
0, which is the same as requiring the
numerator of the expression inside the
square root to be less than or equal to
0. So we need both

−3b < √9b2 − 20c and
−3b < −√9b2 − 20c.
Of course, both are true if and only if
the latter is true. In conclusion, f(x)
is an increasing function if 9b2 < 20c
or −3b < −√9b2 − 20c.
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63. (a)

μ0(−10) ≈ 0.0048− 0.0043−12− (−8)
=
0.0005

−4
= −0.000125

(b)

μ0(−6) ≈ 0.0048− 0.0043−4− (−8)
=
0.0005

4
= 0.000125

Whether the warming of the ice due
to skating makes it easier or harder
depends on the current temperature
of the ice. As seen from these ex-
amples, the coefficient of friction μ is
decreasing when the temperature is
−10◦ and increasing when the tem-
perature is −6◦.

64. We find the derivative of f(t):

f 0(t) =
a2 + t2 − t(2t)

(a2 + t2)2

=
a2 − t2

(a2 + t2)2
.

The denominator is always positive,
while the numerator is positive when
a2 > t2, i.e., when a > t. We now find
the derivative of θ(x):

θ0(x) =
1

1 +
¡
29.25
x

¢2 µ−29.25x2

¶
− 1

1 +
¡
10.75
x

¢2 µ−10.75x2

¶
=

−29.25
x2 + (29.25)2

+
10.75

x2 + (10.75)2
.

We consider each of the two terms of
the last line above as instances of f(t),

the first as −f(29.25) and the sec-
ond as f(10.75). Now, for any given
x where x ≥ 30, this x is our a in
f(t) and since a = x is greater than
29.25 and greater than 10.75, f(t) is
increasing for these two t values and
this value of a. Thus f(29.25) >
f(10.75). This means that

θ0(x) = −f(29.25) + f(10.75) < 0

(where a = x) and so θ(x) is decreas-
ing for x ≥ 30. Since θ(x) is increas-
ing for x ≥ 30, the announcers would
be wrong to suggest that the angle
increases by backing up 5 yards when
the team is between 50 and 60 feet
away from the goal post.

3.5 Concavity and the

Second Derivative

Test

1. f 0(x) = 3x2 − 6x+ 4
f 00(x) = 6x− 6 = 6(x− 1)
f 00(x) > 0 on (1,∞)
f 00(x) < 0 on (−∞, 1)
So f is concave down on (−∞, 1) and
concave up on (1,∞).

2. f 0(x) = 4x3 − 12x + 2 and f 00(x) =
12x2 − 12. The graph is concave up
where f 00(x) is positive, and concave
down where f 00 is negative. Concave
up for x < −1 and x > 1, and concave
down for −1 < x < 1.

3. f(x) = x+ 1
x
= x+ x−1

f 0(x) = 1− x−2

f 00(x) = 2x−3

f 00(x) > 0 on (0,∞)
f 00(x) < 0 on (−∞, 0)
So f is concave up on (0,∞) and con-
cave down on (−∞, 0).
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4. y0 = 1− (1− x)−2/3 and y00 = −2
3
(1−

x)−5/3. Concave up for x > 1 and
concave down for x < 1.

5. f 0(x) = cosx+ sinx
f 00(x) = − sinx+ cosx
f 00(x) < 0 on . . .

¡
π
4
, 5π
4

¢∪¡9π
4
, 13π
4

¢
. . .

f 00(x) > 0 on . . .
¡
3π
4
, π
4

¢ ∪ ¡5π
4
, 9π
4

¢
. . .

f is concave down on . . .
¡
π
4
, 5π
4

¢ ∪¡
9π
4
, 13π
4

¢
. . .,

concave up on . . .
¡
3π
4
, π
4

¢∪¡5π
4
, 9π
4

¢
. . .

6. f 0(x) =
2x

1 + x4
and f 00(x) =

2− 6x4
(1 + x4)2

.

Concave up for − 4

q
1
3
< x < 4

q
1
3
,

and concave down for x < − 4

q
1
3
and

x > 4

q
1
3
.

7. f 0(x) = 4
3
x1/3 + 4

3
x−2/3

f 00(x) = 4
9
x−2/3 + 8

9
x−5/3

= 4
9x2/3

¡
1− 2

x

¢
The quantity

4

9x2/3
is never negative,

so the sign of the second derivative is

the same as the sign of 1− 2
x
. Hence

the function is concave up for x > 2
and x < 0, and is concave down for
0 < x < 2.

8. f 0(x) = e−4x − 4xe−4x and f 00(x) =
8e−4x(2x− 1).
Concave up for x > 1/2, and concave
down for x < 1/2.

9. f(x) = x4 + 4x3 − 1
f 0(x) = 4x3 + 12x2 = x2(4x+ 12)
So the critical numbers are x = 0 and
x = −3.
f 00(x) = 12x2 + 24x
f 00(0) = 0 so the second derivative
test for x = 0 is inconclusive.
f 00(−3) = 36 > 0 so x = −3 is a local
minimum.

10. f(x) = x4 + 4x2 + 1
f 0(x) = 4x3 + 8x
So the only critical number is x = 0.
f 00(x) = 12x2 + 8
f 00(0) = 8 > 0 so x = 0 is a local
minimum.

11. f(x) = xe−x

f 0(x) = e−x − xe−x = e−x(1− x)
So the only critical number is x = 1.
f 00(x) = −e−x − e−x + xe−x =
e−x(−2 + x)
f 00(1) = e−1(−1) < 0 so x = 1 is a
local maximum.

12. f(x) = e−x
2

f 0(x) = −2xe−x2
So the only critical number is x = 0.
f 00(x) = −2e−x2 + 4x2e−x2
f 00(0) = −2+0 < 0 so x = 0 is a local
maximum.

13. f(x) =
x2 − 5x+ 4

x

f 0(x) =
(2x− 5)x− (x2 − 5x+ 4)(1)

x2

=
x2 − 4
x2

So the critical numbers are x = ±2.

f 00(x) =
(2x)(x2)− (x2 − 4)(2x)

x4
=
8x

x4

f 00(2) = 1 > 0 so x = 2 is a local min-
imum.
f 00(−2) = −1 < 0 so x = −2 is a local
maximum.

14. f(x) =
x2 − 1
x

f 0(x) =
(2x)(x)− (x2 − 1)(1)

x2

=
x2 + 1

x2

There are no critical numbers and so
there are no local extrema.
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15. y = (x2 + 1)2/3

y0 =
2

3
(x2 + 1)−1/3(2x)

=
4x(x2 + 1)−1/3

3
So the only critical number is x = 0.
y00 =
4

3

∙
(x2 + 1)−1/3 +

µ−2x2
3

¶
(x2 + 1)−4/3

¸
=
4

3

(x2 + 1− 2x2

3
)

(x2 + 1)4/3
=
4

9

(3x2 + 3− 2x2)
(x2 + 1)4/3

=
4

9

(x2 + 3)

(x2 + 1)4/3

So the function is concave up every-
where, decreasing for x < 0, and in-
creasing for x > 0. Also x = 0 is a
local min.

15

5

20

10

x

-5-10 100 5

16. f(x) = x lnx
f 0(x) = lnx+ 1
So the only critical number is e−1.
f 00(x) = 1/x
f 00(e−1) = e > 0 so f(x) has a local
minimum at x = e−1.
The domain of f(x) is (0,∞).
f 0(x) < 0 on (0, e−1) so f(x) is de-
creasing on this interval. f 0(x) > 0
on (e−1,∞), so f(x) is increasing on
this interval.
f 00(x) > 0 for all x in the domain
of f(x), so f(x) is concave up for all
x > 0.
Finally, f(x) has a vertical asymptote
at x = 0 such that f(x) → ∞ as
x→ 0+.

20

15

10

0

5

x

108420 6

17. f(x) =
x2

x2 − 9
f 0(x) =

2x(x2 − 9)− x2(2x)

(x2 − 9)2
=
−18x

(x2 − 9)2
=

−18x
{(x+ 3)(x− 3)}2

f 00(x) =
−18(x2 − 9)2 + 18x · 2(x2 − 9) · 2x

(x2 − 9)4
=
54x2 + 162

(x2 − 9)3
=
54(x2 + 3)

(x2 − 9)3
f 0(x) > 0 on (−∞,−3) ∪ (−3, 0)
f 0(x) < 0 on (0, 3) ∪ (3,∞)
f 00(x) > 0 on (−∞,−3) ∪ (3,∞)
f 00(x) < 0 on (−3, 3)
f 00(0) =

162

(−9)3
f is increasing on (−∞,−3)∪(−3, 0),
decreasing on (0, 3) ∪ (3,∞), concave
up on (−∞,−3) ∪ (3,∞), concave
down on (−3, 3), x = 0 is a local max.
f has a horizontal asymptote of y = 1
and vertical asymptotes at x = ±3.
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x

1050-5-10
y

10

5

0

-5

-10

18. f(x) =
x

x+ 2
The domain of f(x) is {x|x 6= −2}.
There is a vertical asymptote at x =
−2 such that f(x)→∞ as x→ −2−
and f(x)→ −∞ as x→ −2+.
f 0(x) =

x+ 2− x

(x+ 2)2
=

2

(x+ 2)2

So there are no critical numbers. Fur-
thermore, f 0(x) > 0 for all x 6= −2, so
f(x) is increasing everywhere.
f 00(x) = −4(x+ 2)−3
f 00(x) > 0 on (−∞,−2) (so f(x) is
concave up on this interval)
f 00(x) > 0 on (−2,∞ (so f(x) is con-
cave down on this interval)

y

10

5

0

-5

-10

x

420-2-4

19. f(x) = sinx+ cosx
f 0(x) = cosx− sinx
f 00(x) = − sinx− cosx
f 0(x) = 0 when x = π/4 + kπ
for all integers k. When k is even,
f 00(π/4+ kπ) = −√2 < 0 so f(x) has
a local maximum. When k is odd,
f 00(π/4+ kπ) =

√
2 > 0 so f(x) has a

local minimum.

f 0(x) < 0 on the intervals of the form
(π/4+ 2kπ, π/4+ (2k+1)π), so f(x)
is decreasing on these intervals.
f 0(x) > 0 on the intervals of the form
(π/4+ (2k+1)π, π/4+ (2k+2)π), so
f(x) is increasing on these intervals.
f 00(x) > 0 on the intervals of the form
(3π/4+2kπ, 3π/4+(2k+1)π) so f(x)
is concave up on these intervals.
f 00(x) < 0 on the intervals of the form
(3π/4 + (2k + 1)π, 3π/4 + (2k + 2)π)
so f(x) is concave down on these in-
tervals.

y

2

1

0

-1

-2

x

6420-2-4-6

20. y = e−x sinx
y0 = −e−x sinx + e−x cosx = 0 when
x = π/4 + kπ for integers k.
y00 = −2e−x cosx = 0 at π/2 + 2kπ
for integers k. These are inflection
points. The function is concave up for
−π/2 < x < π/2 and concave down
for π/2 < x < 3π/2, and the pattern
repeats with period 2π. The critical
values are all extrema, and they alter-
nate between maxima and minima.

0-2

100

50

-4

-100

-50

-6 2

150

0

x
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21. f(x) = x3/4 − 4x1/4
Domain of f(x) is {x|x ≥ 0}.

f 0(x) =
3

4
x−1/4 − x−3/4 =

3
4

√
x− 1
x3/4

So x = 0 and x = 16/9 are critical
points, but because of the domain we
only need to really consider the latter.
f 0(1) = −1/4 so f(x) is decreasing on
(0, 16/9).

f 0(4) =
0.5

43/4
> 0 so f(x) is increasing

on (16/9,∞).
Thus x = 16/9 is the location of a lo-
cal minimum for f(x).
f 00(x) = −3

16
x−5/4 + 3

4
x−7/4

=
−3
16

√
x+ 3

4

x7/4
The critical number here is x = 16.
We find that f 00(x) > 0 on the inter-
val (0, 16) (so f(x) is concave up on
this interval) and f 00(x) < 0 on the
interval (16,∞) (so f(x) is concave
down on this interval).

1

-1

-3

x

30252015100

3

2

5
0

-2

22. f(x) = x2/3 − 4x1/3
f 0(x) = 2

3
x−1/3 − 4

3
x−2/3

=
2
3
x1/3 − 4

3

x2/3
So x = 0 and x = 8 are critical num-
bers.
f 0(−1) < 0 so f(x) is decreasing for
x < 0.
f 0(1) < 0 so f(x) is decreasing for
0 < x < 8.
f 0(27) > 0 so f(x) is increasing on

8 < x.
f 00(x) = −2

9
x−4/3 + 8

9
x−5/3

=
−2
9
x1/3 + 8

9

x5/3
The critical numbers here are x = 0
and x = 64.
f 00(−1) < 0 so f(x) is concave down
on (−∞, 0).
f 00(1) > 0 so f(x) is concave up on
(0, 64).
f 00(125) < 0 so f(x) is concave down
on (64,∞).

50

30

40

0

20

0

10

x

400300200-100 100 500

23. The easiest way to sketch this graph
is to notice that

f(x) = x|x| =
(
x2 x ≥ 0
−x2 x < 0

Since

f 0(x) =

(
2x x ≥ 0
−2x x < 0

there is a critical point at x = 0.
However, it is neither a local maxi-
mum nor a local minimum. Since

f 00(x) =

(
2 x > 0

−2 x < 0

there is an inflection point at the ori-
gin. Note that the second derivative
does not exist at x = 0.
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24. The easiest way to sketch this graph
is to notice that

f(x) = x2|x| =
(
−x3 x < 0

x3 x ≥ 0
Since

f 0(x) =

(
−3x2 x < 0

3x2 x ≥ 0
there is a critical point (and local min-
imum) at x = 0. Since

f 00(x) =

(
−6x x < 0

6x x ≥ 0
there is a critical point at the origin
but this is not an inflection point.
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25. f(x) = x1/5(x+ 1) = x6/5 + x1/5

f 0(x) = 6
5
x1/5 + 1

5
x−4/5

= 1
5
x−4/5(6x+ 1)

f 00(x) = 6
25
x−4/5 − 4

25
x−9/5

= 2
25
x−9/5(3x− 2)

Note that f(0) = 0, and yet the
derivatives do not exist at x = 0. This
means that there is a vertical tangent
line at x = 0. The first derivative
is negative for x < −1/6 and posi-

tive for −1/6 < x < 0 and x > 0.
The second derivative is positive for
x < 0 and x > 2/3, and negative for
0 < x < 2/3. Thus, there is a local
minimum at x = −1/6 and inflection
points at x = 0 and x = 2/3.
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26. f(x) =

√
x

1 +
√
x

The domain of f(x) is {x|x ≥ 0}.

f 0(x) =
1
2
x−1/2(1 +

√
x)−√x(1

2
x−1/2)

(x+
√
x)2

=
x−1/2

2(1 +
√
x)2

The only critical point is x = 0, which
we need not consider because of the
domain. Since f 0(1) > 0, f(x) is in-
creasing on (0,∞).

f 00(x) =
−x−3/2(1 +√x)2 − 2x−1/2(1 +√x)x−1/2

4(1 +
√
x)4

=
−(x−1/2 + 3)
4x(1 +

√
x)3

The critical numbers are x = 0 (which
we again ignore) and x = 1/9. Since
f 00(1) < 0 and f 00(1/16) < 0, f(x) is
concave down on (0,∞).
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27. f(x) = x4 − 26x3 + x
f 0(x) = 4x3 − 78x2 + 1
The critical numbers are approxi-
mately −0.1129, 0.1136 and 19.4993.
f 0(−1) < 0 implies f(x) is decreasing
on (−∞,−0.1129).
f 0(0) > 0 implies f(x) is increasing
on (−0.1129, 0.1136).
f 0(1) < 0 implies f(x) is decreasing
on (0.1136, 19.4993).
f 0(20) > 0 implies f(x) is increasing
on (19.4993,∞).
Thus f(x) has local minimums at x =
−0.1129 and x = 19.4993 and a local
maximum at x = 0.1136.
f 00(x) = 12x2 − 156x = x(12x− 156)
The critical numbers are x = 0 and
x = 13.
f 00(−1) > 0 implies f(x) is concave
up on (−∞, 0).
f 00(1) < 0 implies f(x) is concave
down on (0, 13).
f 00(20) > 0 implies f(x) is concave up
on (13,∞).
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x
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28. f(x) = 2x4 − 11x3 + 17x2
f 0(x) = 8x3 − 33x2 + 34x

= x(8x− 17)(x− 2)
The critical numbers are x = 0, x = 2
and x = 17/8.
f 00(x) = 24x2 − 66x+ 34
f 00(0) > 0 implies f(x) is concave up
at x = 0 so f(x) has a local mini-
mum here and f(x) is decreasing on
(−∞, 0).
f 00(2) < 0 implies f(x) is concave
down at x = 2 so f(x) has a local
maximum here and f(x) is increasing
on (0, 2).
f 00(17/8) > 0 implies f(x) is con-
cave up at x = 17/8 so f(x) has a
local minimum here and f(x) is de-
creasing on (2, 17/8) and increasing
on (17/8,∞).
f 00(x) = 2(12x2 − 33x+ 17)
The critical numbers are

x =
33±√273

24
= 2.0635, 0.6866.

So f(x) is concave up on
(−∞, 0.6866) and (2.0635,∞)
and f(x) is concave down on
(0.6866, 2.0635).
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29. y = 3
√
x2 − 1

y0 =
4x

3(2x2 − 1)2/3 = 0 at x = 0 and
is undefined at x = ±p1/2.
y00 =

−4(2x2 + 3)
9(2x2 − 1)5/3 is never 0, and is

undefined where y0 is.
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The function changes concavity at
x = ±p1/2, so these are inflection
points. The slope does not change
at these values, so they are not ex-
trema. The Second Derivative Test
shows that x = 0 is a minimum.

2
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0
0
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x
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30. f(x) =
√
x3 + 1

f(x) is defined for x ≥ −1.
f 0(x) = 1

2
(x3 + 1)−1/2(3x2).

The critical numbers are x = −1
(which we ignore because of the do-
main) and x = 0.
f 0(−1/2) > 0 so f(x) is increasing on
(−1, 0). f 0(1) > 0 so f(x) is also in-
creasing on (0,∞) so f(x) has no rel-
ative extrema.

f 00(x) =
3

2
·2x(x

3 + 1)1/2 − x2 1
2
(x3 + 1)−1/23x2

x3 + 1

=
2x(x3 + 1)− 3

2
x4

(x3 + 1)3/2

=
−1
2
x4 + 2x

(x3 + 1)3/2

The critical numbers are x = 0 and
x = 41/3 (and x = −1, which we need
not consider).
f 00(−1/2) < 0 so f(x) is concave down
on (−1, 0). f 00(1) > 0 so f(x) is con-
cave up on (0, 41/3). f 00(2) > 0 so f(x)
is concave up on (41/3,∞).
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31. f(x) = x4− 16x3 +42x2− 39.6x+14
f 0(x) = 4x3 − 48x2 + 84x− 39.6
f 00(x) = 12x2 − 96x+ 84

= 12(x2 − 8x+ 7)
= 12(x− 7)(x− 1)

f 0(x) > 0 on (.8952, 1.106) ∪
(9.9987,∞)
f 0(x) < 0 on (−∞, .8952) ∪
(1.106, 9.9987)
f 00(x) > 0 on (−∞, 1) ∪ (7,∞)
f 00(x) < 0 on (1, 7)
f is increasing on (.8952, 1.106)
and on (9.9987,∞), decreasing on
(−∞, .8952) and on (1.106, 9.9987),
concave up on (−∞, 1)∪ (7,∞), con-
cave down on (1, 7), x = .8952, 9.9987
are local min, x = 1.106 is local max,
x = 1, 7 are inflection points.
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32. y = x4 + 32x3 − 0.02x2 − 0.8x
y0 = 4x3 + 96x2 − 0.04x − 0.8 = 0 at
approximately x = −24, −0.09125,
and 0.09132.
y00 = 12x2+192x−0.04 = 0 at approx-
imately x = 16.0002 and 0.0002, and
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changes sign at these values, so these
are inflection points. The Second
Derivative Test shows that x = −24
and 0.09132 are minima, and that
x = −0.09125 is a maxima. The ex-
trema near x = 0 look like this:
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The global behavior looks like this:
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33. f(x) = x
√
x2 − 4; f undefined on

(−2, 2)
f 0(x) =

√
x2 − 4
+ x

¡
1
2

¢
(x2 − 4)−1/2(2x)

=
√
x2 − 4 + x2√

x2 − 4
=
2x2 − 4√
x2 − 4

f 00(x) =
4x
√
x2 − 4− (2x2 − 4)1

2
(x2 − 4)−1/2(2x)

x2 − 4
=
4x(x2 − 4)x− (2x2 − 4)

(x2 − 4)3/2
=
2x3 − 12x
(x2 − 4)3/2 =

2x(x2 − 6)
(x2 − 4)3/2

f 0(x) > 0 on (−∞,−2) ∪ (2,∞)
f 00(x) > 0 on

¡−√6, 2¢ ∪ ¡√6,∞¢

f 00(x) < 0 on
¡−∞,−√6¢ ∪ ¡2,√6¢

f is increasing on (−∞,−2)
and on (2,∞), concave up on¡−√6,−2¢∪ ¡√6,∞¢, concave down
on
¡−∞,−√6¢ ∪ ¡2,√6¢, x = ±√6

are inflection points.
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34. f(x) =
2x√
x2 + 4

f 0(x) =
2
√
x2 + 4− 2x(1

2
)(x2 + 4)−1/22x

(x2 + 4)

=
8

(x2 + 4)3/2

f 0(x) is always positive, so there are
no critical points and f(x) is always
increasing.
f 00(x) = 8(−3

2
)(x2 + 4)−5/2(2x)

=
−24x

(x2 + 4)5/2

The only critical point is x = 0. Since
f 00(−1) > 0, f(x) is concave up on
(−∞, 0). Also f 00(1) < 0, so f(x) is
concave down on (0,∞) and x = 0 is
an inflection point for f .
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35. The function has horizontal asymp-
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tote y = 0, and is undefined at x =
±1.
y0 =

−2x
x4 − 2x2 + 2 = 0

only when x = 0.

y00 =
2(3x4 − 2x2 − 2)
(x4 − 2x2 + 2)2 = 0

at approximately x = ±1.1024 and
changes sign there, so these are in-
flection points (very easy to miss by
looking at the graph). The Second
Derivative Test shows that x = 0 is a
local maximum.

1

0.5

x

0
0 6

-1.5

4-4

1.5

-0.5

-1

2-2-6

36. f(x) = e−2x cosx
f 0(x) = −2e−2x cosx− e−2x sinx

= e−x(−2 cosx− sinx)
f 00(x) = −2e−2x(−2 cosx− sinx)

+ e−2x(2 sinx− cosx)
= e−2x(4 sinx+ 3 cosx)

f 0(x) = 0 when sinx = −2 cosx so
when x = kπ + tan−1(−2) for any in-
teger k.
f 00(2kπ + tan−1(−2)) < 0 so there
are local maxima at all such points,
while f 00((2k+1)π+ tan−1(−2)) > 0,
so there are local minima at all such
points. f 00(x) = 0 when 4 sinx =
−3 cosx or x = kπ+ tan−1(−3/4) for
any integer k. All such points x are
inflection points.
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37. f(x) is concave up on (−∞,−0.5) and
(0.5,∞);
f(x) is concave down on (−0.5, 0.5).

38. f(x) is concave up on (−∞, 0);
f(x) is concave down on (0,∞).

39. f(x) is concave up on (1,∞);
f(x) is concave down on (−∞, 1).

40. f(x) is concave up on (−1, 0) and
(1,∞);
f(x) is concave down on (−∞,−1)
and (0, 1).

41. One possible graph:

y

10

5

0

-5

-10

x

210-1-2

42. One possible graph:
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43. One possible graph:
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44. One possible graph:
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45. f(x) = ax3 + bx2 + cx+ d
f 0(x) = 3ax2 + 2bx+ c
f 00(x) = 6ax+ 2b
Thus, f 00(x) = 0 for x = −b/3a. Since
f 00 changes sign at this point, f has an
inflection point at x = −b/3a. Note
that a 6= 0.
For the quartic function (where again
a 6= 0),
f(x) = ax4 + bx3 + cx2 + dx+ e
f 0(x) = 4ax3 + 3bx2 + 2cx+ d

f 00(x) = 12ax2 + 6bx+ 2c
= 2(6ax2 + 3bx+ c)

The second derivative is zero when

x =
−3b±√9b2 − 24ac

12a

=
−3b±p3(3b2 − 8ac)

12a
There are two distinct solutions to
the previous equation (and therefore
two inflection points) if and only if
3b2 − 8ac > 0.

46. Since f 0(0) = 0 and f 00(0) > 0, f(x)
must have a local minimum at x = 0.
Since we also know that f(0) = 0, this
means that there is some neighbor-
hood (possibly very small) of 0 such
that for all x in this neighborhood
(exluding x = 0), f(x) > 0.

Similarly, g0(0) = 0 and g00(0) < 0
implies that g(x) must have a local
maximum at x = 0. Again we know
that g(0) = 0, so there is some neigh-
borhood of 0 such that for all x in
this neighborhood (exluding x = 0),
g(x) < 0.

On the smaller of these two neigh-
borhoods, we know that g(x) < 0 <
f(x).

47. The function has the following prop-
erties:
increasing on (0,∞);
decreasing on (−∞, 0);
local minimum at x = 0;
concave up on (−∞,∞);
no inflection points.

48. The function has the following prop-
erties:
increasing on (−∞, 1) and (2,∞);
decreasing on (1, 2);
local maximum at x = 1;
local minimum at x = 2;
concave up on (1.5,∞);
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concave down on (−∞, 1.5);
inflection point at x = 1.5.

49. For #47:
increasing on (−∞,−1) and (1,∞);
decreasing on (−1, 1);
local maximum at x = −1;
local minimum at x = 1;
concave up on (0,∞);
concave down on (−∞, 0);
inflection point at x = 0.

For # 48:
increasing on (0, 2) and (2,∞);
decreasing on (−∞, 0);
local minimum at x = 0;
concave up on (−∞, 1) and (2,∞);
concave down on (1, 2);
inflection points at x = 1 and x = 2.

50. For #47:
concave up on (−∞,−1) and (1,∞);
concave down on (−1, 1);
inflection points at x = −1 and x = 1.
For # 48:
concave up on (0, 2) and (2,∞);
concave down on (−∞, 0);
inflection point at x = 0.

51. We need to know w0(0) to know if the
depth is increasing.

52. We assume the sick person’s tempera-
ture is too high, and not too low. We
do need to know T 0(0) in order to tell
which is better.

If T 00(0) = 2 and T 0 > 0, the person’s
temperature is rising alarmingly.

If T 00(0) = −2 and T 0 > 0, the per-
son’s temperature is increasing, but
leveling off.
Negative T 00 is better if T 0 > 0.

If T 00(0) = 2 and T 0 < 0, the person’s
temperature is decreasing and level-
ing off.

If T 00(0) = −2 and T 0 < 0, the
person’s temperature is dropping too
steeply to be safe.
Positive T 00 is probably better if T 0 <
0.

53. s(x) = −3x3+270x2− 3600x+18000
s0(x) = −9x2 + 540x− 3600
s00(x) = −18x+ 540 = 0
x = 30. This is a max because the
graph of s0(x) is a parabola opening
down. So spend $30,000 on advertis-
ing to maximize the rate of change of
sales. This is also the inflection point
of s(x).

54. Q0(t) measures the number of units
produced per hour. If this number is
larger, the worker is more efficient.
Q0(t) = −3t2+12t+12 will be maxi-
mized where
Q00 = −6t + 12 = 0, or t = 2
hours. (This is a maximum by the
First Derivative Test.) It is reason-
able to call this inflection point the
point of diminishing returns, because
after this point, the efficiency of the
worker decreases.

55. C(x) = .01x2 + 40x+ 3600

C(x) =
C(x)

x
= .01x+ 40 + 3600x−1

C
0
(x) = .01− 3600x−2 = 0

x = 600. This is a min because
C̄ 00(x) = 7200x−3 > 0 for x > 0, so
the graph is concave up. So manu-
facture 600 units to minimize average
cost.

56. Solving c0 = 0 yields t = 19.8616. The
Second Derivative Test shows this is
a maximum. Solving c00 = 0 yields
t = 41.8362. Suppose a second drug
produced a similar plasma concen-
tration graph, with the same max-
imum, but a later inflection point.
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Then the plasma concentration de-
cays faster for the second drug, since
it takes longer for the rate of decay to
level off.

57. Both functions are increasing for x >
0 and have the same asymptote, y =
1, so that is no help. However, if

f(x) =
x

27 + x
,

then

f 0(x) =
27

(27 + x)2
.

Hence f 0(x) is decreasing for x > 0
and so f has no inflection points on
this interval. On the other hand, if

f(x) =
x3

c3 + x3
,

then

f 0(x) =
3cx2

(c3 + x3)2

and

f 00(x) =
6c3x(c3 − 2x3)
(c3 + x3)3

and so there is an inflection point at
x = c/ 3

√
2. When c = 27, 27/ 3

√
2 ≈

21.4, in excellent agreement with the
given graph.

58. tan−1 x is not a good fit to the data
(even after appropriately scaling) be-
cause it is not concave up near x = 0.

g1(x) =
2

π
tan−1

x

30
fits the data weakly. g1(27) is close to
0.5, but then g1(40) is too small.

g2(x) =
1

1 + 99e−t/2
has the desired change in concavity,
but it grows too rapidly. For exam-
ple, if the function is scaled so that
g2(27) ≈ 0.5, then g2(40) is very
nearly 1 instead of 0.75.

59. Let f(x) = −1− x2. Then
f 0(x) = −2x
f 00(x) = −2

so f is concave down for all x, but
−1− x2 = 0 has no solution.

60. The statement is true.

61. Since the tangent line points above
the sun, the sun appears higher in the
sky than it really is.

62. If f 00(c) < 0, then f 0 is decreasing at
c. Because f 0(c) = 0, this means that
f 0 > 0 to the left of c and f 0 < 0 to
the right of c. Therefore, by the First
Derivative Test, f(c) is a local maxi-
mum. The proof of the second claim
is similar.

3.6 Overview of

Curve Sketching

1. f(x) = x3 − 3x2 + 3x
= x(x2 − 3x+ 3)

The only x-intercept is x = 0; the y-
intercept is (0, 0).
f 0(x) = 3x2 − 6x+ 3

= 3(x2 − 2x+ 1) = 3(x− 1)2
f 0(x) > 0 for all x, so f(x) is increas-
ing for all x and has no local extrema.
f 00(x) = 6x− 6 = 6(x− 1)
There is an inflection point at x = 1:
f(x) is concave down on (−∞, 1) and
concave up on (1,∞).
Finally, f(x) → ∞ as x → ∞ and
f(x)→ −∞ as x→ −∞.
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2. f(x) = x4 − 3x2 + 2x
= x(x3 − 3x+ 2)

The x-intercepts are x = −2, x = 1
and x = 0; the y-intercept is (0, 0).
f 0(x) = 4x3 − 6x+ 2

= 2(x3 − 3x+ 1)
The critical numbers are x = −1.366,
0.366 and 1.
f 0(x) > 0 on (−1.366, 0.366) and
(1,∞), so f(x) is increasing on these
intervals. f 0(x) < 0 on (−∞,−1.366)
and (0.366, 1), so f(x) is decreasing
on these intervals. Thus f(x) has lo-
cal minima at x = −1.366 and x = 1
and a local maximum at x = 0.366.
f 00(x) = 12x2 − 6 = 6(2x2 − 1)
The critical numbers here are x =
±1/√2. f 00(x) > 0 on (−∞,−1/√2)
and (1/

√
2,∞) so f(x) is concave

up on these intervals. f 00(x) < 0
on (−1/√2, 1/√2) so f(x) is concave
down on this interval. Thus f(x) has
inflection points at x = ±1/√2.
Finally, f(x)→∞ as x→ ±∞.
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3. f(x) = x5 − 2x3 + 1
The x-intercepts are x = 1 and x ≈
−1.5129; the y-intercept is (0, 1).
f 0(x) = 5x4 − 6x2 = x2(5x2 − 6)
The critical numbers are x = 0 and
x = ±p6/5. Plugging values from
each of the intervals into f 0(x), we
find that f 0(x) > 0 on (−∞,−p6/5)
and (

p
6/5,∞) so f(x) is increasing

on these intervals. f 0(x) < 0 on

(−p6/5, 0) and (0,p6/5) so f(x) is
decreasing on these intervals. Thus
f(x) has a local maximum at −p6/5
and a local minimum at

p
6/5.

f 00(x) = 20x3 − 12x = 4x(5x2 − 3)
The critical numbers are x = 0 and
x = ±p3/5. Plugging values from
each of the intervals into f 00(x), we
find that f 00(x) > 0 on (−p3/5, 0)
and (

p
3/5,∞) so f(x) is concave up

on these intervals. f 00(x) < 0 on
(−∞,−p3/5) and (0,p3/5) so f(x)
is concave down on these intervals.
Thus f(x) has inflection points at all
three of these critical numbers.
Finally, f(x) → ∞ as x → ∞ and
f(x)→ −∞ as x→ −∞.
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4. f(x) = sinx− cosx
This has y-intercept (0,−1) and x-
intercepts everywhere that sinx =
cosx, i.e., at x = π/4 + kπ for any
integer k.
f 0(x) = cosx+ sinx
The critical numbers here are x =
3π/4 + kπ for any integer k. We find
that f(x) is decreasing on intervals of
the form (3π/4+2kπ, 3π/4+(2k+1)π)
and increasing on intervals of the form
(3π/4 + (2k − 1)π, 3π/4 + 2kπ).
f 00(x) = − sinx+ cosx
The critical numbers are x = π/4+kπ
for any integer k. f(x) is concave
down on the intervals of the form
(π/4 + 2kπ, π/4 + (2k + 1)π) and
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concave up on intervals of the form
(π/4 + (2k − 1)π, π/4 + 2kπ).
f(x) has no vertical or horizontal
asymptotes.
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5. f(x) = x+
4

x
=

x2 + 4

x
This function has no x- or y-
intercepts. The domain is {x|x 6= 0}.
f(x) has a vertical asymptote at
x = 0 such that f(x) → −∞ as
x→ 0− and f(x)→∞ as x→ 0+.

f 0(x) = 1− 4x−2 = x2 − 4
x2

The critical numbers are x = ±2. We
find that f 0(x) > 0 on (−∞,−2) and
(2,∞) so f(x) is increasing on these
intervals. f 0(x) < 0 on (−2, 0) and
(0, 2), so f(x) is decreasing on these
intervals. Thus f(x) has a local maxi-
mum at x = −2 and a local minimum
at x = 2.
f 00(x) = 8x−3

f 00(x) < 0 on (−∞, 0) so f(x) is
concave down on this interval and
f 00(x) > 0 on (0,∞) so f(x) is con-
cave up on this interval, but f(x) has
an asymptote (not an inflection point)
at x = 0.
Finally, f(x)→ −∞ as x→ −∞ and
f(x)→∞ as x→∞.
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6. f(x) =
x2 − 1
x

= x− 1
x

There are x-intercepts at x − ±1,
but no y-intercepts. The domain is
{x|x 6= 0}.
f(x) has a vertical asymptote at
x = 0 such that f(x)→∞ as x→ 0−

and f(x)→ −∞ as x→ 0+.

f 0(x) = 1− x−2 =
x2 − 1
x2

The critical numbers are x = ±1.
f(x) is increasing (−∞,−1) and
(1,∞) and f(x) is decreasing on
(−1, 0) and (0, 1). Thus f(x) has a
local maximum at x = −1 and a lo-
cal minimum at x = 1.
f 00(x) = 2x−3

f 00(x) < 0 on (−∞, 0) so f(x) is
concave down on this interval and
f 00(x) > 0 on (0,∞) so f(x) is con-
cave up on this interval, but f(x) has
an asymptote (not an inflection point)
at x = 0.
Finally, f(x)→ −∞ as x→ −∞ and
f(x)→∞ as x→∞.
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7. f(x) = x lnx
The domain is {x|x > 0}. There is
an x-intercept at x = 1 and no y-
intercept.
f 0(x) = lnx+ 1
The only critical number is x = e−1.
f 0(x) < 0 on (0, e−1) and f 0(x) > 0
on (e−1,∞) so f(x) is decreasing on
(0, e−1) and increasing on (e−1,∞).
Thus f(x) has a local minimum at
x = e−1.
f 00(x) = 1/x, which is positive for all
x in the domain of f , so f(x) is al-
ways concave up.
f(x)→∞ as x→∞.
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x
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3
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1

0

8. f(x) = x lnx2

The domain is {x|x 6= 0}. There
are x-intercepts at x = ±1 but no y-
intercept.
f 0(x) = lnx2 + 2
The critical numbers are x = ±e−1.
f 00(x) = 2/x, so x = −e−1 is a
local maximum and x = e−1 is a
local minimum. f(x) is increasing

on (−∞,−e−1) and (e−1,∞); f(x) is
decreasing on (−e−1, 0) and (0, e−1).
f(x) is concave down on (−∞, 0) and
concave up on (0,∞).
f(x) → −∞ as x → ∞ and f(x) →
∞ as x→∞.
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x
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9. f(x) =
√
x2 + 1

The y-intercept is (0, 1). There are
no x-intercepts.

f 0(x) =
1

2
(x2 + 1)−1/22x =

x√
x2 + 1

The only critical number is x = 0.
f 0(x) < 0 when x < 0 and f 0(x) > 0
when x > 0 so f(x) is increasing
on (0,∞) and decreasing on (−∞, 0).
Thus f(x) has a local minimum at
x = 0.

f 00(x) =

√
x2 + 1− x1

2
(x2 + 1)−1/22x

x2 + 1

=
1

(x2 + 1)3/2

Since f 00(x) > 0 for all x, we see that
f(x) is concave up for all x.
f(x)→∞ as x→ ±∞.
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10. f(x) =
√
2x− 1

The domain is {x|x ≥ 1/2}. There is
an x-intercept at x = 1/2.

f 0(x) =
1

2
(2x− 1)−1/22 = 1√

2x− 1
f 0(x) is undefined at x = 1/2, but this
is an endpoint of f(x) and there are
no other critical points. Since f 0(x)
is positive for all x in the domain of
f , we see that f(x) is increasing for
all x in the domain.

f 00(x) = −1
2
(2x−1)−3/22 = −1

(2x− 1)3/2

f 00(x) < 0 for all x in the domain of
f , so f is concave down for all x for
which it is defined.
f(x)→∞ as x→∞.

1
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0.5

x
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11. f(x) =
4x

x2 − x+ 1
The function has horizontal asymp-
tote at y = 0.

f 0(x) =
4(1− x2)

(x2 − x+ 1)2

There are critical numbers at x = ±1.
f 00(x) =

8(x3 − 3x+ 1)
(x2 − x+ 1)3

with critical numbers at approxi-
mately x = −1.8793, 0.3473, and
1.5321. f 00(x) changes sign at these
values, so these are inflection points.
The Second Derivative test shows
that x = −1 is a minimum, and x = 1

is a maximum.
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12. f(x) =
4x2

x2 − x+ 1
The function has horizontal asymp-
tote at y = 4.

f 0(x) =
−4x(x− 2)
(x2 − x+ 1)2

There are critical numbers at x = 0
and x = 2.

f 00(x) =
8(x3 − 3x2 + 1)
(x2 − x+ 1)3

with critical numbers at approxi-
mately x = −0.5321, 0.6527, and
2.8794. f 00(x) changes sign at these
values, so these are inflection points.
The Second Derivative test shows
that x = 0 is a minimum, and x = 2
is a maximum.
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13. f(x) = (x3 − 3x2 + 2x)1/3
f 0(x) =

3x2 − 6x+ 2
3(x3 − 3x2 + 2x)2/3

There are critical numbers at x =
3±√3
3

, 0, 1 and 2.

f 00(x) =
−6x2 + 12x− 8

9(x3 − 3x2 + 2x)5/3
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with critical numbers x = 0, 1 and
2. f 00(x) changes sign at these values,
so these are inflection points. The
Second Derivative test shows that

x =
3 +
√
3

3
is a minimum, and x =

3−√3
3

is a maximum.

f(x)→ −∞ as x→ −∞ and f(x)→
∞ as x→∞.
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14. f(x) = (x3 − 3x2 + 2x)1/2
f(x) is defined for 0 ≤ x ≤ 1 and
x ≥ 2. f(x)→∞ as x→∞.
f 0(x) =

3x2 − 6x+ 2
2(x3 − 3x2 + 2x)1/2

There are critical numbers at x =
3±√3
3

, 0, 1 and 2.

f 00(x) =
3x4 − 12x3 + 12x2 − 4
4(x3 − 3x2 + 2x)3/2

with critical numbers x = 0, 1 and 2
and x ≈ −0.4679 and 2.4679. f(x) is
undefined at x = −0.4679, so we do
not consider this point. f 00(x) changes
sign at x = 2.4679, so this is an in-
flection point. The Second Derivative

test shows that x =
3−√3
3

is a max-

imum.
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15. f(x) = x5 − 5x = x(x4 − 5)
x-intercepts are x = 0 and x = ± 4

√
5.

The y-intercept is (0, 0).
f 0(x) = 5x4 − 5 = 5(x4 − 1)
The critical numbers are x = ±1.
f 00(x) = 20x3 so x = −1 is a local
maximum and x = 1 is a local mini-
mum. f(x) is increasing on (−∞,−1)
and (1,∞) and decreasing on (−1, 1).
It is concave up on (0,∞) and concave
down on (−∞, 0), with an inflection
point at x = 0.
f(x)→ −∞ as x→ −∞ and f(x)→
∞ as x→∞.
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16. f(x) = x3 − 3

400
x = x(x2 − 3

400
)

The y-intercept (also an x-intercept)
is (0, 0) and there are also x-intercepts
at x = ±√3/20.
f 0(x) = 3x2 − 3

400
The critical numbers are x = ±1/20.
f 00(x) = 6x, so x = −1/20 is a lo-
cal maximum and x = 1/20 is a lo-
cal minimum. f(x) is increasing on
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(−∞,−1/20) and (1/20,∞) and de-
creasing on (−1/20, 1/20). It is con-
cave up on (0,∞) and concave down
on (−∞, 0), with an inflection point
at x = 0.
f(x)→ −∞ as x→ −∞ and f(x)→
∞ as x→∞.
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17.

f(x) = e−2/x

f 0(x) = e−2/x
µ
2

x2

¶
=
2

x2
e−2/x

f 00(x) =
−4
x3

e−2/x +
2

x2
e−2/x

µ
2

x2

¶
=
4

x4
e−2/x − 4

x3
e−2/x

f 0(x) > 0 on (−∞, 0) ∪ (0,∞)
f 00(x) > 0 on (−∞, 0) ∪ (0, 1)
f 00(x) < 0 on (1,∞)
f increasing on (−∞, 0) and on
(0,∞), concave up on (−∞, 0)∪(0, 1),
concave down on (1,∞), inflection
point at x = 1. f is undefined at
x = 0.

lim
x→0+

e−2/x = lim
x→0+

1

e2/x
= 0 and

lim
x→0−

e−2/x =∞
So f has a vertical asymptote at
x = 0. lim

x→∞
e−2/x = lim

x→−∞
e−2/x = 1

So f has a horizontal asymptote at
y = 1.
Global graph of f(x):
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Local graph of f(x):
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18. f(x) = e1/x
2

The function has a vertical asymp-
tote at x = 0 such that f(x) → ∞
as x approaches 0 from the right or
left. There is a horizontal asymptote
of y = 1 as x→ ±∞.

f 0(x) =
−2
x3
· e1/x2

f 0(x) > 0 for x < 0, so f(x) is in-
creasing on (−∞, 0) and f 0(x) < 0
for x > 0, so f(x) is decreasing on
(−∞, 0).

f 00(x) =
2e1/x

2
(3x2 + 2)

x6

is positive for all x 6= 0, so f(x) is
concave up for all x 6= 0.
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19. f(x) = (x3 − 3x2 + 2x)2/3
f 0(x) =

2(3x2 − 6x+ 2)
3(x3 − 3x2 + 2x)1/3

There are critical numbers at x =
3±√3
3

, 0, 1 and 2.

f 00(x) =
18x4 − 72x3 + 84x2 − 24x− 8

9(x3 − 3x2 + 2x)4/3
with critical numbers x = 0, 1 and 2
and x ≈ −0.1883 and 2.1883. f 00(x)
changes sign at these last two values,
so these are inflection points. The
Second Derivative test shows that

x =
3±√3
3

are both maxima. Local

minima occur at x = 0, 1 and 2.
f(x)→∞ as x→ ±∞.
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20. f(x) = x6−10x5−7x4+80x3+12x2−
192x
f(x)→∞ as x→ ±∞.
f 0(x) = 6x5 − 50x4 − 28x3 + 240x2 +
24x− 192
Critical numbers at approximately
x = −1.9339, −1.0129, 1, 1.9644, and
8.3158.

f 00(x) = 30x4−200x3−84x2+480x+
24
Critical numbers at approximately
x = −1.5534, −0.0496, 1.5430, and
6.7267, and changes sign at each
of these values, so these are inflec-
tion points. The Second Derivative
Test shows that x = −1.9339, 1,
and 8.3158 are local minima, and
x = −1.0129 and 1.9644 are local
maxima. The extrema near x = 0
look like this:
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The inflection points, and the global
behavior of the function can be seen
on the following graph.
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21. f(x) =
x2 + 1

3x2 − 1
Note that x = ±p1/3 are not in the
domain of the function, but yield ver-
tical asymptotes.

f 0(x) =
2x(3x2 − 1)− (x2 + 1)(6x)

(3x2 − 1)2
=
(6x3 − 2x)− (6x3 + 6x)

(3x2 − 1)2
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=
−8x

(3x2 − 1)2
So the only critical point is x = 0.

f 0(x) > 0 for x < 0
f 0(x) < 0 for x > 0
so f is increasing on (−∞,−p1/3)
and on (−p1/3, 0); decreasing on
(0,
p
1/3) and on (

p
1/3,∞). Thus

there is a local max at x = 0.

f 00(x) = 8 · 9x2 + 1

(3x2 − 1)3
f 00(x) > 0 on (−∞,−p1/3) ∪
(
p
1/3,∞)

f 00(x) < 0 on (−p1/3,p1/3)
Hence f is concave up on
(−∞,−p1/3) and on (

p
1/3,∞);

concave down on (−p1/3,p1/3).
Finally, when |x| is large, the function
approached 1/3, so y = 1/3 is a hori-
zontal asymptote.
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22. f(x) =
2x2

x3 + 1
The function has a vertical asymptote
at x = −1, and horizontal asymptote
y = 0.

f 0(x) =
2x(2− x3)

(x3 + 1)2
.

The critical numbers are x = 0 and
x = 3
√
2.

f 00(x) =
4(x6 − 7x3 + 1)
(x3 + 1)3

Critical numbers at approximately
x = 0.5264 and x = 1.8995, and
changes sign at these values, so these
are inflection points. The Second
Derivative Test shows that x = 0 is
a local minimum, and x = 3

√
2 is a lo-

cal maximum.
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23. f(x) =
5x

x3 − x+ 1
Looking at the graph of x3 − x + 1,
we see that there is one real root, at
approximately −1.325; so the domain
of the function is all x except for this
one point, and x = −1.325 will be a
vertical asymptote. There is a hori-
zontal asymptote of y = 0.

f 0(x) = 5
1− 2x3

(x3 − x− 1)2
The only critical point is x = 3

p
1/2.

By the first derivative test, this is a
local max.

f 00(x) = 10
3x5 + x3 − 6x2 + 1
(x3 − x+ 1)3

The numerator of f 00 has three real
roots, which are approximately x =
−.39018, x = .43347, and x = 1.1077.
f 00(x) > 0 on (−∞,−1.325) ∪
(−.390, .433) ∪ (1.108,∞)
f 00(x) < 0 on (−1.325,−.390) ∪
(.433, 1.108)
So f is concave up on (−∞,−1.325)∪
(−.390, .433) ∪ (1.108,∞) and con-
cave down on (−1.325,−.390) ∪
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(.433, 1.108). Hence x = −.39018,
x = .43347, and x = 1.1077 are in-
flection points.
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24. f(x) =
4x

x2 + x+ 1
The function has horizontal asymp-
tote at y = 0.

f 0(x) =
−4(x2 − 1)
(x2 + x+ 1)2

There are critical numbers at x = ±1.
f 00(x) =

8(x3 − 3x− 1)
(x2 + x+ 1)3

with critical numbers at approxi-
mately x = −1.5321, −0.3473, and
1.8794. f 00(x) changes sign at these
values, so these are inflection points.
The Second Derivative test shows
that x = −1 is a minimum, and x = 1
is a maximum.
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25. f(x) = x2
√
x2 − 9

f is undefined on (−3, 3).
f 0(x) =

2x
√
x2 − 9+x2

µ
1

2
(x2 − 9)−1/2 · 2x

¶

= 2x
√
x2 − 9 + x3√

x2 − 9
=
2x(x2 − 9) + x3√

x2 − 9
=
3x3 − 18x√

x2 − 9 =
3x(x2 − 6)√

x2 − 9
=
3x(x+

√
6)(x−√6)√

x2 − 9

Critical points ±3. (Note that f is
undefined at x = 0, ±√6.)

f 00(x) =
(9x2 − 18)√x2 − 9

x2 − 9
− (3x

3 − 18x) · 1
2
(x2 − 9)−1/2 · 2x

x2 − 9
=
(9x2 − 18)(x2 − 9)− x(3x3 − 18x)

(x2 − 9)3/2

=
(6x4 − 81x2 + 162)

(x2 − 9)3/2

f 00(x) = 0 when

x2 =
81±p812 − 4(6)(162)

2(6)

=
81±√2673

12
=
1

4
(27±

√
297)

So x ≈ ±3.325 or x ≈ ±1.562, but
these latter values are not in the same
domain. So only ±3.325 are potential
inflection points.
f 0(x) > 0 on (3,∞)
f 0(x) < 0 on (−∞,−3)
f 00(x) > 0 on (−∞,−3.3) ∪ (3.3,∞)
f 00(x) < 0 on (−3.3, 3) ∪ (3, 3.3)
f is increasing on (3,∞), decreas-
ing on (−∞,−3), concave up on
(−∞,−3.3)∪ (3.3,∞), concave down
on (−3.3,−3)∪ (3, 3.3). x = ±3.3 are
inflection points.
Global graph of f(x):
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Local graph of f(x):
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26. f(x) = 3
√
2x2 − 1

f 0(x) =
4x

3(2x2 − 1)2/3
f 0(x) = 0 at x = 0 and is undefined
at x = ±p1/2.
f 00(x) =

−4(2x2 + 3)
9(2x2 − 1)5/3

f 00(x) is never 0, and is undefined
where f 0 is. The function changes
concavity at x = ±p1/2, so these are
inflection points. The slope does not
change at these values, so they are not
extrema. The Second Derivative Test
shows that x = 0 is a minimum.
f(x) → ∞ as x → ±∞.
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27. f(x) = e−2x sinx
f 0(x) = e−2x(cosx− 2 sinx)
f 00(x) = e−2x(3 sinx− 4 cosx)
f 0(x) = 0 when cosx = 2 sinx; that
is, when tanx = 1/2; that is, when
x = kπ + tan−1(1/2), where k is any
integer.
f 0(x) < 0, and f is decreas-
ing, on intervals of the form
(2kπ + tan−1(1

2
), (2k + 1)π + tan−1(1

2
))

f 0(x) > 0 and f is increas-
ing, on intervals of the form
((2k − 1)π + tan−1(1

2
), 2kπ + tan−1(1

2
))

Hence f has a local max at x =
2kπ + tan−1(1/2) and a local min at
x = (2k + 1)π + tan−1(1/2).
f 00(x) = 0 when 3 sinx = 4 cosx; that
is, when tanx = 4/3; that is, when
x = kπ + tan−1(4/3). The sign of f 00

changes at each of these points, so all
of them are inflection points.
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28. f(x) = sinx− 1
2
sin 2x

f 0(x) = cosx− cos 2x
f 0(x) = 0 when x = 2kπ, 2π/3+ 2kπ,
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or 4π/3 + 2kπ.
f 00(x) = − sinx+ 2 sin 2x
f 00(x) = 0 when x = 0, π and approx-
imately ±1.3181, and the pattern re-
peats with period 2π. f 00 changes sign
at each of these values, so these are in-
flection points. The First Derivative
Test shows that x = 2kπ is neither a
minimum nor a maximum. The Sec-
ond Derivative Test shows that the
other critical numbers are extrema
that alternate between minima and
maxima.
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29. f(x) = x4− 16x3 +42x2− 39.6x+14
f 0(x) = 4x3 − 48x2 + 84x− 39.6
f 00(x) = 12x2 − 96x+ 84

= 12(x2 − 8x+ 7)
= 12(x− 7)(x− 1)

f 0(x) > 0 on (.8952, 1.106) ∪
(9.9987,∞)
f 0(x) < 0 on (−∞, .8952) ∪
(1.106, 9.9987)
f 00(x) > 0 on (−∞, 1) ∪ (7,∞)
f 00(x) < 0 on (1, 7)
f is increasing on (.8952, 1.106)
and on (9.9987,∞), decreasing on
(−∞, .8952) and on (1.106, 9.9987),
concave up on (−∞, 1)∪ (7,∞), con-
cave down on (1, 7), x = .8952, 9.9987
are local min, x = 1.106 is local max,
x = 1, 7 are inflection points.
f(x)→∞ as x→ ±∞.
Global graph of f(x):

10000

0

x

20151050-5-10

40000

30000

20000

Local graph of f(x):

2.5

2

1.5

1

0.5

x

1.41.210.80.6

30. f(x) = x4 + 32x3 − 0.02x2 − 0.8x
f 0(x) = 4x3 + 96x2 − 0.04x− 0.8
f 0(x) = 0 at approximately x = −24,
−0.09125, and 0.09132.
f 00(x) = 12x2 + 192x− 0.04
f 00(x) = 0 at approximately x =
16.0002 and 0.0002, and changes sign
at these values, so these are inflection
points. The Second Derivative Test
shows that x = −24 and 0.09132 are
minima, and that x = −0.09125 is
a maxima. The extrema near x = 0
look like this:

0.08

0.04

0

-0.04

-0.08

x

0.20.10-0.1-0.2

The global behavior looks like this:
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0.08

0.04

0

-0.04

-0.08

x

0.20.10-0.1-0.2

31. f(x) =
25− 50√x2 + 0.25

x

= 25

Ã
1− 2√x2 + 0.25

x

!

= 25

Ã
1−√4x2 + 1

x

!
Note that x = 0 is not in the domain
of the function.

f 0(x) = 25

Ã
1−√4x2 + 1
x2
√
4x2 + 1

!

We see that there are no critical
points. Indeed, f 0 < 0 wherever f
is defined. One can verify that

f 00(x) > 0 on (0,∞)
f 00(x) < 0 on (−∞, 0)
Hence the function is concave up on
(0,∞) and concave down on (−∞, 0).

lim
x→∞

25− 50√x2 + 0.25
x

= lim
x→∞

25

x
− 50

√
x2 + 0.25

x

= lim
x→∞

0− 50
x
q
1 + 0.25

x2

x

= lim
x→∞
−50

r
1 +

0.25

x2
= −50

lim
x→−∞

25− 50√x2 + 0.25
x

= lim
x→∞

25

x
− 50

√
x2 + 0.25

x

= lim
x→−∞

0− 50
(−x)

q
1 + 0.25

x2

x

= lim
x→∞

50

r
1 +

0.25

x2
= 50

So f has horizontal asymptotes at
y = 50 and y = −50.

20

0

40

-40

-20

x

105-5 0-10

32. f(x) = tan−1
µ

1

x2 − 1
¶

The function has horizontal asymp-
tote y = 0, and is undefined at
x = ±1.

f 0(x) =
−2x

x4 − 2x2 + 2
f 0(x) = 0 only when x = 0.

f 00(x) =
2(3x4 − 2x2 − 2)
(x4 − 2x2 + 2)2

f 00(x) = 0 at approximately x =
±1.1024 and changes sign there, so
these are inflection points (very easy
to miss by looking at the graph). The
Second Derivative Test shows that
x = 0 is a local maximum.

1

0.5

x

0
0 6

-1.5

4-4

1.5

-0.5

-1

2-2-6
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33. f(x) = x4 + cx2

f 0(x) = 4x3 + 2cx
f 00(x) = 12x2 + 2c

c = 0: 1 extremum, 0 inflection points
c < 0: 3 extrema, 2 inflection points
c > 0: 1 extremum, 0 inflection points
c→ −∞: the graph widens and low-
ers
c→ +∞: the graph narrows

34. f(x) = x4 + cx2 + x
f 0(x) = 4x3 + 2cx+ 1
f 00(x) = 12x2 + 2c

If c is negative, there will be two solu-
tions to f 00 = 0, and these will be in-
flection points. For c > 0 there will be
no solutions to f 00 = 0, and no inflec-
tion points. For c = 0, f 00 = 0 when
x = 0, but does not change sign there,
so this is not an inflection point. f 0 =
0 has one solution, corresponding to
a minimum, for all c > −1.5. For
c = −1.5, there is a second critical
point which is neither a minimum nor
a maximum. For c < −1.5 there are
three critical points, two minima and
a maximum.

As c → ∞ the curve has one mini-
mum, and narrows.

As c→ −∞, the two minima get far-
ther apart and drop lower. The local
maximum approaches (0, 0).

35. f(x) =
x2

x2 + c2

f 0(x) =
2c2x

(x2 + c2)2

f 00(x) =
2c4 − 6c2x2
(x2 + c2)3

If c = 0: f(x) = 1, except that f is
undefined at x = 0.

c < 0, c > 0: horizontal asymptote at
y = 1, local min at x = 0, since the
derivative changes sign from negative
to positive at x = 0; also there are
inflection points at x = ±c/√3.
As c → −∞, c → +∞: the graph
widens.

36. f(x) = e−x
2/c

f 0(x) =
−2x
c
· e−x2/c

f 00(x) =
−2c+ 4x2

c2
· e−x2/c

For c > 0 the graph is a bell curve
centered at its maximum point (0, 1),
and the inflection points are at x =
±pc/2. As c→∞, the curve widens.
The function is not defined for c = 0.

For c < 0, there are no inflection
points, and x = 0 is a minimum. The
graph is cup shaped and widens as
c→ −∞.

37. When c = 0, f(x) = sin(0) = 0.

Since sinx is an odd function,
sin(−cx) = − sin(cx). Thus negative
values of c give the reflection through
the x-axis of their positive counter-
parts. For large values of c, the graph
looks just like sinx, but with a very
small period.

38. When c = 0, we have f(x) =
x2
√−x2, which is undefined.

Since x2
√
c2 − x2 = x2

p
(−c)2 − x2,

the function is the same regardless
of whether c is negative or positive.
The function is always 0 at x = 0
and undefined for |x| > |c|. Where
it is defined, f(x) ≥ 0, attaining its
minimum at x = 0. It reaches its
maximum value at x = ±p2c2/3.
At these points, f attains the value
2
√
3|c|3/9. The function looks gener-

ally the same as |c| gets large, with
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the domain and range increasing as
|c| does.

39. f(x) = xe−bx

f(0) = 0
f(x) > 0 for x > 0

lim
x→∞

xe−bx = lim
x→∞

x

ebx
= lim

x→∞
1

bebx
= 0

(by L’Hôspital’s rule)
f 0(x) = e−bx (1− bx), so there is a
unique critical point at x = 1/b,
which must be the maximum. The
bigger b is, the closer the max is to
the origin. For time since conception,
1/b represents the most common ges-
tation time. For survival time, 1/b
represents the most common life span.

40. From the graph we can count 15 max-
ima and 16 minima in the range 0 ≤
x ≤ 10. Using a CAS to solve
f 0(x) =
− sin(10x+ 2 cosx)(10− 2 sinx)

= 0,
we find the following values of x at
the extrema

Minima Maxima
0.11549 0.44806
0.80366 1.18055
1.57080 1.96104
2.33793 2.69353
3.02610 3.33776
3.63216 3.91326
4.18477 4.45009
4.71239 7.97469
5.24001 5.51152
5.79261 6.08702
6.39868 6.73125
7.08685 7.46374
7.85398 8.24422
8.62112 8.97672
9.30929 9.62094
9.91535

41. No: Let f(x) =
x+ 1

x2 + 1
. The roots

of the denominator are complex, so
there are no vertical asymptotes.

No: Let f(x) =
x4 − 2x+ 3

x2 + 1
. This

function goes to ∞ as x→ ±∞.
42.

lim
x→∞

∙
x4 − x2 + 1

x2 − 1 − x2
¸

= lim
x→∞

∙
x4 − x2 + 1− x2(x2 − 1)

x2 − 1
¸

= lim
x→∞

∙
1

x2 − 1
¸
= 0

Thus f(x) =
x4 − x2 + 1

x2 − 1 has x2 as an

asymptote.

43. f(x) =
3x2 − 1

x
= 3x− 1

x
y = 3x is a slant asymptote.

y

15

10

5

0

-5

-10

-15

x

420-2-4

44. f(x) =
3x2 − 1
x− 1 = 3x+ 3 +

2

x− 1,
so the slant asymptote is y = 3x+ 3.

y

20

15

10

5

0

x
-5

-10

6

-15

420-2-4-6

45. f(x) =
x3 − 2x2 + 1

x2
= x− 2 + 1

x2
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y = x− 2 is a slant asymptote.

0-2-4
y

10

5

0

-5

-10

x

42

46. f(x) =
x3 − 1
x2 − 1 = x+

x− 1
x2 − 1,

so the slant asymptote is y = x.

-10

x

6420-2

y

-4

10

-6

5

0

-5

47. f(x) =
x4

x3 + 1
= x− x

x3 + 1

y = x is a slant asymptote.

y

6

4

2

0

-2

-4

-6

x

3210-1-2-3

48. f(x) =
x4 − 1
x3 + x

= x+
−x2 − 1
x3 + x

,

so the slant asymptote is y = x.

-10

x

6420-2

y

-4

10

-6

5

0

-5

49. One possibility:

f(x) =
3x2

(x− 1)(x− 2)

50. One possibility:

f(x) =
x

x2 − 1

51. One possibility:

f(x) =
2xp

(x− 1)(x+ 1)

52. One possibility:

f(x) =
2x2

(x− 1)(x− 3)

53. f(x) = sinhx =
ex − e−x

2

f 0(x) =
ex + e−x

2
f 0(x) > 0 for all x so f(x) is always
increasing and has no extrema.

f 00(x) =
ex − e−x

2
f 00(x) = 0 only when x = 0 and
changes sign here, so f(x) has an in-
flection point at x = 0.
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3

2

1

-1

-2

0

-3

x

210-1-2

f(x) = coshx =
ex + e−x

2

f 0(x) =
ex − e−x

2
f 0(x) = 0 only when x = 0.

f 00(x) =
ex + e−x

2
f 00(x) > 0 for all x, so f(x) has no
inflection points, but x = 0 is a mini-
mum.

50

30

10

x

420-2-4

70

60

40

20

0

54. For y = sinhx we need to use −1
2
e−x

instead of 1
2
e−x. To explain the en-

veloping behavior, note that

lim
x→−∞

sinhx = lim
x→−∞

ex − e−x

2

= lim
x→−∞

−e
−x

2

lim
x→∞

sinhx = lim
x→∞

ex − e−x

2

= lim
x→∞

ex

2

3

1

-3

2

0

x

10 2-1-2

-2

-1

To explain the enveloping behavior
for y = coshx, note that

lim
x→−∞

coshx = lim
x→−∞

ex + e−x

2

= lim
x→−∞

e−x

2

lim
x→∞

coshx = lim
x→∞

ex + e−x

2

= lim
x→∞

ex

2

3.5

2.5

0.5

3

2

0

x

210-2

1

1.5

-1

3.7 Optimization

1. f(x) = x2 + 1 has a minimum at
x = 0, while sin(x2 + 1) has minima
where x2 + 1 = 3π/2 + 2npπ.

2. True, since ex is an increasing func-
tion, the x values which make f(x)
the smallest will also make ef(x) the
smallest.
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3.

A = xy = 1800

y =
1800

x

P = 2x+ y = 2x+
1800

x

P 0 = 2− 1800
x2

= 0

2x2 = 1800

x = 30

P 0(x) > 0 for x > 30
P 0(x) < 0 for 0 < x < 30
So x = 30 is min.

y =
1800

x
=
1800

30
= 60

So the dimensions are 300 × 600 and
the minimum perimeter is 120 ft.

4. If y is the length of fence opposite the
river, and x is the length of the other
two sides, then we have the constraint
2x+ y = 96. We wish to maximize
A = xy = x(96− 2x).
A0 = 96− 4x = 0 when x = 24.
A00 = −4 < 0 so this gives a maxi-
mum. Reasonable possible values of
x range from 0 to 48, and the area is
0 at these extremes. The maximum
area is A = 1152, and the dimensions
are x = 24, y = 48.

5.

P = 2x+ 3y = 120

3y = 120− 2x
y = 40− 2

3
x

A = xy

A(x) = x

µ
40− 2

3
x

¶
A0(x) = 1

µ
40− 2

3
x

¶
+ x

µ
−2
3

¶
= 40− 4

3
x = 0

40 =
4

3
x

x = 30

A0(x) > 0 for 0 < x < 30

A0(x) < 0 for x > 30

So x = 30 is max, y = 40− 2
3
·30 = 20

So the dimensions are 200 × 300.

6. Let x be the length of the sides fac-
ing each other and y be the length
of the third side. We have the con-
straint that xy = 800, or y = 800/x.
We also know that x > 6 and y > 10.
The function we wish to minimize is
the length of walls needed, or the side
length minus the width of the doors.
L = (y − 10) + 2(x − 6) = 800/x +
2x− 22.
L0 = −800/x2 + 2 = 0 when x = 20.
L00 = 1600/x3 > 0 when x = 20 so
this is a minimum. Possible values of
x range from 6 to 80. L(6) = 123.3,
L(80) = 148, and L(20) = 58. To
minimize the length of wall, the fac-
ing sides should be 20 feet, and the
third side should be 40 feet.
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7.

A = xy

P = 2x+ 2y

2y = P − 2x
y =

P

2
− x

A(x) = x

µ
P

2
− x

¶
A0(x) = 1 ·

µ
P

2
− x

¶
+ x(−1)

=
P

2
− 2x = 0

P = 4x

x =
P

4

A0(x) > 0 for 0 < x < P/4
A0(x) < 0 for x > P/4

So x = P/4 is max,

y =
P

2
− x =

P

2
− P

4
=

P

4

So the dimensions are P
4
× P

4
. Thus

we have a square.

8. We have a rectangle with sides x and
y and area A = xy, and that we wish
to minimize the perimeter,

P = 2x+ 2y = 2x+ 2 · A
x
.

P 0 = 2− 2A
x2
= 0 when x =

√
A.

P 00 = 4A/x3 > 0 here, so this is a
minimum. Possible values of x range
from 0 to ∞. As x approaches these
values the perimeter grows without
bound. For fixed area, the rectangle
with minimum perimeter has dimen-
sions x = y =

√
A, a square.

9.

d =
p
(x− 0)2 + (y − 1)2

y = x2

d =
p
x2 + (x2 − 1)2

= (x4 − x2 + 1)1/2

d0(x) =
1

2
(x4 − x2 + 1)−1/2(4x3 − 2x)

=
2x(2x2 − 1)
2
√
x4 − x2 + 1

= 0

x = 0,±p1/2;
f(0) = 1, f(

p
1/2) = 3/4,

f(−p1/2) = 3
4
;

Thus x = ±p1/2 are min, and the
points on y = x2 closest to (0, 1) are
(
p
1/2, 1/2) and (−p1/2, 1/2).

10. Points on the curve y = x2 can be
written (x, x2). The distance from
such a point to (3, 4) is

D =
p
(x− 3)2 + (x2 − 4)2

=
√
x4 − 7x2 − 6x+ 25.

We numerically approximate the so-
lution of

D0 =
2x3 − 7x− 3√

x4 − 7x2 − 6x+ 25 = 0
to be x ≈ 2.05655, and two negative
solutions. The negative critical num-
bers clearly do not minimize the dis-
tance. The closest point is approxi-
mately (2.05655, 4.22940).

11.

d =
p
(x− 0)2 + (y − 0)2

y = cosx

d =
√
x2 + cos2 x

d0(x) =
2x− 2 cosx sinx
2
√
x2 + cos2 x

= 0

x = cosx sinx

x = 0
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So x = 0 is min and the point on
y = cosx closest to (0, 0) is (0, 1).

12. Points on the curve y = cosx can be
written (x, cosx). The distance from
such a point to (1, 1) is

D =
p
(x− 1)2 + (cosx− 1)2

=
√
x2 − 2x+ cos2 x− 2 cosx+ 2

We numerically approximate the so-
lution of

D0 =
x− 1− cosx sinx+ sinx√
x2 − 2x+ cos2 x− 2 cosx+ 2

= 0

to be x ≈ 0.789781. The First
or Second Derivative Test shows
that this is a minimum distance.
The closest point is approximately
(0.789781, 0.704001).

13. For (0, 1), (
p
1/2, 1/2) on y = x2, we

have
y0 = 2x, y0(

p
1/2) = 2 ·p1/2 = √2

and

m =
1
2
− 1

−
q

1
2
− 0

=
1√
2
.

For (0, 1), (−p1/2, 1/2) on y = x2,
we have
y0(−p1/2) = 2(−p1/2) = −√2 and

m =
1
2
− 1

−
q

1
2
− 0

=
1√
2
.

For (3, 4), (2.06, 4.2436) on y = x2,
we have y0(2.06) = 2(2.06) = 4.12
and

m =
4.2436− 4
2.06− 3 = −0.2591 ≈ − 1

4.12
.

14. Consider a curve, a point not on the
curve, and a point on the curve.

y

5

4

3

2

1

x

0
21.510.50

If
the line connecting the points is not
perpendicular to the tangent line to
the curve, then the point on the curve
can move closer to the point off the
curve by moving in the direction of
the acute angle on the same side as
the point off the curve. When the
lines are perpendicular, the points on
the curve nearby are not closer to the
point off the curve.

15.

V = l · w · h
V (x) = (10− 2x)(6− 2x) · x, 0 ≤ x ≤ 3
V 0(x) = −2(6− 2x) · x+ (10− 2x)(−2) · x

+ (10− 2x)(6− 2x)
= 60− 64x+ 12x2
= 4(3x2 − 16x+ 15)
= 0

x =
16±p(−16)2 − 4 · 3 · 15

6

=
8

3
±
√
19

3

x =
8

3
+

√
19

3
> 3.

V 0(x) > 0 for x < 8/3−√19/3
V 0(x) < 0 for x > 8/3−√19/3

So x =
8

3
−
√
19

3
is a max.

16. If we cut squares out of the corners of
a 12” by 16” sheet and fold it into a
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box, the volume of the resulting box
will be

V = x(12− 2x)(16− 2x)
= 4x3 − 56x2 + 192x,

where the value of x must be between
0 and 6.

V 0 = 12x2 − 112x+ 192 = 0
when x = 14±2√13

3
≈ 7.07 and 2.26.

The critical value x = 14+2
√
13

3
is out-

side of the reasonable range. The
volume is 0 when x is 0 or 6. The
First Derivative Test shows that x =
14−2√13

3
gives the maximum volume.

17. Let x be the distance from the con-
nection point to the easternmost de-
velopment. Then 0 ≤ x ≤ 5.
f(x) =

p
32 + (5− x)2 +

√
42 + x2,

0 ≤ x ≤ 5
f 0(x) = −(9 + (5− x)2)−1/2(5− x)

+
1

2
(16 + x2)−1/2(2x)

=
x− 5p

9 + (5− x)2
+

x√
16 + x2

= 0

x =
20

7
≈ 2.857

f(0) = 4 +
√
34 ≈ 9.831

f

µ
20

7

¶
=
√
74 ≈ 8.602

f(5) = 3 +
√
41 ≈ 9.403

So x = 20/7 is minimum. The length
of new line at this point is approxi-
mately 8.6 miles. Since f(0) ≈ 9.8
and f(5) ≈ 9.4, the water line should
be 20/7 miles west of the second de-
velopment.

18. Say the pipeline intersects the shore
at a distance x from the closest point

on the shore to the oil rig. Then
x will be between 0 and 8. The
length of underwater pipe is then
W =

√
x2 + 252, and the length of

pipe constructed on land will be L =p
(8− x)2 + 52. The total cost will

be C = 50W + 20L.

We numerically solve

C 0 =
50x√
625 + x2

+
10(2x− 16)√
x2 − 16x+ 89 = 0

to find x ≈ 5.108987. The first deriva-
tive test shows that this gives a mini-
mum. The cost at this value is $1391
thousand. The cost when x = 0 is
$1439 thousand, and the cost when
x = 8 is $1412 thousand, so x =
5.108987 gives the absolute minimum
cost.

19.

C(x) = 5
√
16 + x2 + 2

p
36 + (8− x)2

0 ≤ x ≤ 8
C(x) = 5

√
16 + x2 + 2

√
100− 16x+ x2

C 0(x) = 5
µ
1

2

¶
(16 + x2)−1/2 · 2x

+ 2

µ
1

2

¶
(100− 16x+ x2)−1/2(2x− 16)

=
5x√
16 + x2

+
2x− 16√

100− 16x+ x2

= 0

x ≈ 1.2529
C(0) = 40

C(1.2529) ≈ 39.0162
C(8) ≈ 56.7214

The highway should emerge from the
marsh 1.2529 miles east of the bridge.
If we build a straight line to the inter-
change, we have x = (3.2).

Since C(3.2)−C(1.2529) ≈ 1.963, we
save $1.963 million.
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20. Say the road intersects the edge of the
marsh at a distance x from the clos-
est point on the edge to the bridge.
Then x will be between 0 and 8.
The length of road over marsh is now
M =

√
x2 + 42, and the length of

road constructed on dry land will be
L =

p
(8− x)2 + 62. The total cost

will be C = 6M + 2L.

We numerically solve

C 0 =
6x√
16 + x2

+
2x− 16√

x2 − 16x+ 100 = 0

to find x ≈ 1.04345. The first deriva-
tive test shows that this gives a min-
imum. The cost at this value is
$43.1763 million. The cost when we
use the solution x = 1.2529 from ex-
ercise 19 is $43.2078 million, so the
increase is $31,500.

21.

C(x) = 5
√
16 + x2 + 3

p
36 + (8− x)2

0 ≤ x ≤ 8
C 0(x) =

5x√
16 + x2

+
3x− 24√

100− 16x+ x2

Setting C 0(x) = 0 yields
x ≈ 1.8941
C(0) = 50

C(1.8941) ≈ 47.8104
C(8) ≈ 62.7214

The highway should emerge from the
marsh 1.8941 miles east of the bridge.
So if we must use the path from exer-
cise 21, the extra cost is
C(1.2529)− C(1.8941)
= 48.0452− 47.8104 = 0.2348
or about $234.8 thousand.

22. Say the contestant swims to a point
on shore distance x from the closest

point on shore. Then x will be be-
tween 0 and 3. The distance travelled
in water will be W =

√
22 + x2 and

the distance travelled on land will be
L =

p
(3− x)2 + 22. The total time

will be T =W/4 + L/10.

We numerically solve

T 0 =
x

4
√
4 + x2

+
2x− 6

20
√
x2 − 6x+ 13 = 0

to find x ≈ .6407871171. The total
time in the water will be 0.5256 hours.
The total time on land will be 0.3087
hours.

23.

T (x) =

√
1 + x2

v1
+

p
1 + (2− x)2

v2

T 0(x) =
1

v1
· 1
2
(1 + x2)−1/2 · 2x

+
1

v2
(1 + (2− x)2)−1/2 · (2− x)(−1)

=
x

v1
√
1 + x2

+
x− 2

v2
p
1 + (2− x)2

Note that

T 0(x) =
1

v1
· x√
1 + x2

− 1

v2
· (2− x)p

1 + (2− x)2

=
1

v1
sin θ1 − 1

v2
sin θ2

When T 0(x) = 0, we have

1

v1
sin θ1 =

1

v2
sin θ2

sin θ1
sin θ2

=
v1
v2

24. The distance light travels is

D =
√
22 + x2 +

p
12 + (4− x)2.
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We maximize this by solving

D0 =
x√
4 + x2

+
2x− 8

2
√
x2 − 8x+ 17 = 0

to find x = 8/3. For this value of x,
θ1 = θ2 = tan−1(3/4). (Or simply
note similar triangles.)

25. Cost: C = 2(2πr2) + 2πrh
Convert from fluid ounces to cubic
inches:
12 fl oz = 12 fl oz · 1.80469 in3/fl oz

= 21.65628 in3

Volume: V = πr2h so

h =
V

πr2
=
21.65628

πr2

C = 4πr2 + 2πr

µ
21.65628

πr2

¶
C(r) = 4πr2 + 43.31256r−1

C 0(r) = 8πr − 43.31256r−2

=
8πr3 − 43.31256

r2

r =
3

r
43.31256

8π
= 1.198900

when C 0(r) = 0.
C 0(r) < 0 on (0, 1.1989)
C 0(r) > 0 on (1.1989,∞)
Thus r = 1.1989 minimizes the cost.

h =
21.65628

π(1.1989)2
= 4.795700

26. If the top and bottom of the cans are
2.23 times as thick as the sides, then
the new cost function will be

C(r) = 2π

µ
2.23r2 +

21.65628

πr

¶
.

Then C 0(r) = 2π(4.46r− 21.65628
πr2

) = 0

when r = 3

q
21.65628
4.46π

≈ 1.156. The

First Derivative Test shows this is
a minimum, and we can verify that
the cost increases without bound as
r → 0 and r →∞.

27.

V (r) = cr2(r0 − r)

V 0(r) = 2cr(r0 − r) + cr2(−1)
= 2crr0 − 3cr2
= cr(2r0 − 3r)

V 0(r) = 0 when r = 2r0/3
V 0(r) > 0 on (0, 2r0/3)
V 0(r) < 0 on (2r0/3,∞)
Thus r = 2r0/3 maximizes the veloc-
ity.
r = 2r0/3 < r0, so the windpipe con-
tracts.

28. We wish to minimize

E(θ) =
csc θ

r4
+
1− cot θ

R4
.

We find

E0(θ) = −csc θ cot θ
r4

+
1 + cot2 θ

R4

=
− cos θR4 + r4

r4R4 sin2 θ
.

This is zero when cos θ = r4/R4,
so θ = cos−1(r4/R4). The deriva-
tive changes from negative to positive
here, so this gives a minimum as de-
sired.

29. p(x) =
V 2x

(R+ x)2

p0(x) =
V 2(R+ x)2 − V 2x · 2(R+ x)

(R+ x)4

=
V 2R2 − V 2x2

(R+ x)4

p0(x) = 0 when x = R
p0(x) > 0 on (0, R)
p0(x) < 0 on (R,∞)
Thus x = R maximizes the power ab-
sorbed.

30. If the meter registers 115 volts, then
v = 115

√
2. The function V (t) =

v sin(2πft) has amplitude v, so the
maximum value of the voltage is
115
√
2.
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31. πr + 4r + 2w = 8 + π

w =
8 + π − r(π + 4)

2

A(r) =
πr2

2
+ 2rw

=
πr2

2
+ r(8 + π − r(π + 4))

= r2
³
−4− π

2

´
+ r(8 + π)

A0(r) = −2r
³
4 +

π

2

´
+ (8 + π) = 0

A0(r) = 0 when r = 1
A0(r) > 0 on (0, 1)
A0(r) < 0 on (1,∞)
Thus r = 1 maximizes the area so

w =
8 + π − (π + 4)

2
= 2. The di-

mensions of the rectangle are 2× 2.

32. Let x be the distance from the end at
which the wire is cut. Due to sym-
metry, we may consider 0 ≤ x ≤
1. We wish to minimize the area of
the squares formed by the two pieces.
The total area is

A(x) =
³x
4

´2
+

µ
2− x

4

¶2
=
2x2 − 4x+ 4

16
.

We compute

A0(x) =
x

4
− 1
4
= 0 when x = 1.

A00 =
1

4
> 0, so this is a minimum.

We check A(0) = 1/4 and A(1) = 1/8
and see that cutting the wire in half
minimizes the area of the two squares.

33. l × w = 92, w = 92/l
A(l) = (l + 4)(w + 2)

= (l + 4) (92/l + 2)
= 92 + 368/l + 2l + 8
= 100 + 368l−1 + 2l

A0(l) = −368l−2 + 2
=
2l2 − 368

l2

A0(l) = 0 when l =
√
184 = 2

√
46

A0(l) < 0 on (0, 2
√
46)

A0(l) > 0 on (2
√
46,∞)

So l = 2
√
46 minimizes the total area.

When l = 2
√
46, w = 92

2
√
46
=
√
46.

For the minimum total area, the
printed area has width

√
46 in. and

length 2
√
46 in., and the advertise-

ment has overall width
√
46 + 2 in.

and overall length 2
√
46 + 4 in.

34. Let x and y be the width and height
of the advertisement. Then xy = 120
and y = 120/x. We wish to maximize
the printed area

A = (x−2)(y−3) = (x−2)(120
x
−3)

= 126− 3x− 240
x
.

We find A0 = −3 + 240

x2
= 0 when

x = 4
√
5. The first Derivative Test

shows that this is a maximum. The
smallest x could be is 2, and this gives
A(2) = 0. The largest x could be
is 40, and this also gives A(40) =
0. Thus, we see that the dimensions
which maximize the printed area are
x = 4

√
5 and y = 6

√
5.

35. Let L represent the length of the lad-
der. Then from the diagram, it fol-
lows that
L = a sec θ + b csc θ.
Therefore,

dL

dθ
= a sec θ tan θ − b csc θ cot θ

0 = a sec θ tan θ − b csc θ cot θ

a sec θ tan θ = b csc θ cot θ

b

a
=
sec θ tan θ

csc θ cot θ

=
1

cos θ

sin θ

cos θ

sin θ

1

sin θ

cos θ
= tan3 θ

Thus,
tan θ = 3

p
b/a
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θ = tan−1
³

3
p
b/a
´

= tan−1
³

3
p
4/5
´

≈ 0.748 rad or 42.87 degrees
Thus, the length of the longest ladder
that can fit around the corner is ap-
proximately
L = a sec θ + b csc θ
= 5 sec(0.748) + 4 csc(0.748)
≈ 12.7 ft

36. From exercise 35, we have that θ =
tan−1( 3

p
b/a) is the critical number

limiting the length of the ladder.
Thus tan θ = b1/3/a1/3. We can then
draw a right triangle with θ as one
angle and the length of the side op-
posite θ equal to b1/3 and the length
of the side adjacent to θ equal to a1/3.
By the Pythagorean Theorem, the hy-
potenuse of this triangle is (a2/3 +
b2/3)1/2. From this triangle, we find

sin θ =
b1/3

(a2/3 + b2/3)1/2
and

cos θ =
a1/3

(a2/3 + b2/3)1/2

so

csc θ =
(a2/3 + b2/3)1/2

b1/3
and

sec θ =
(a2/3 + b2/3)1/2

a1/3
.

Thus

L = a sec θ + b csc θ

= a · (a
2/3 + b2/3)1/2

a1/3

+ b · (a
2/3 + b2/3)1/2

b1/3

= a2/3(a2/3 + b2/3)1/2

+ b2/3(a2/3 + b2/3)1/2

= (a2/3 + b2/3)(a2/3 + b2/3)1/2

= (a2/3 + b2/3)3/2.

37. Using the result of exercise 36 and
solving for b:

L = (a2/3 + b2/3)3/2

L2/3 = a2/3 + b2/3

b2/3 = L2/3 − a2/3

b = (L2/3 − a2/3)3/2

= (82/3 − 52/3)3/2
≈ 1.16 ft

38. This was already done in exercise 37
while solving for b:

b = (L2/3 − a2/3)3/2.

39.

R(x) =
35x− x2

x2 + 35

R0(x) = −35x
2 + 2x− 35
(x2 + 35)2

= −35(x− 5)(x+ 7)
(x2 + 35)2

Hence the only critical number for
x ≥ 0 is x = 5 (that is, 5000 items).
This must correspond to the absolute
maximum, since R(0) = 0 and R(x)
is negative for large x. So maximum
revenue is R(5) = 2.5 (that is, $2500).

40. To maximize

R(x) =
cx− x2

x2 + c
,

we compute

R0x =
c(c− 2x− x2)

(x2 + c)2
.

This is zero when x2 + 2x− c = 0, so

x =
−2±√4 + 4c

2
.

The First Derivative Test shows that

x =
−2 +√4 + 4c

2
is a maximum.
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41. Q0(t) is efficiency because it repre-
sents the number of additional items
produced per unit time.
Q(t) = −t3 + 12t2 + 60t
Q0(t) = −3t2 + 24t+ 60

= 3(−t2 + 8t+ 20)
This is the quantity we want to max-
imize.

Q00(t) = 3(−2t+8) so the only critical
number is t = 4 hours. This must be
the maximum since the function Q0(t)
is a parabola opening down.

42. The worker’s efficiency, Q0 is max-
imized at the point of diminishing
returns because at this point Q00

changes from positive to negative.
The First Derivative Test applied to
Q0 shows that Q0 has a local maxi-
mum at this point. (This assumes
that the graph of Q changes from con-
cave up to concave down at the inflec-
tion point. If this was reversed, the
inflection point would not be a point
of diminishing returns, and the effi-
ciency would be minimized at such a
point.)

43. Let C(t) be the total cost of the tick-
ets. Then
C(t) =(price per ticket)(# of tickets)
C(t) = (40− (t− 20))(t)

= (60− t)(t) = 60t− t2

for 20 < t < 50. Then C 0(t) = 60−2t,
so t = 30 is the only critical number.
This must correspond to the maxi-
mum since C(t) is a parabola opening
down.

44. If each additional ticket over 20 re-
duces the cost-per-ticket by c dollars,
then the total cost for ordering x tick-
ets (with x between 20 and 50) is
C(x) = (40− c(x− 20))x

= (40 + 20c)x− cx2.

This is a downward facing parabola

with one maximum at x =
20 + 10c

c
.

If we want the maximum cost to be
at x = 50, we must choose c so that
the peak of the parabola is at or to the

right of 50. The value of x =
20 + 10c

c
increases as c decreases, and equals 50
when c = 1

2
. Any discount of 50 cents

or less will cause the maximum cost to
occur when the group orders 50 tick-
ets.

45.

R =
2v2 cos2 θ

g
(tan θ − tanβ)

R0(θ) =
2v2

g
[2 cos θ(− sin θ)(tan θ − tanβ)
+ cos2 θ · sec2 θ¤

=
2v2

g

∙
−2 cos θ sin θ · sin θ

cos θ

+2 cos θ sin θ tanβ

+cos2 θ · 1

cos2 θ

¸
=
2v2

g

£−2 sin2 θ + sin(2θ) tanβ + 1¤
=
2v2

g

£−2 sin2 θ + sin(2θ) tanβ
+(sin2 θ + cos2 θ)

¤
=
2v2

g
[sin(2θ) tanβ

+(cos2 θ − sin2 θ)¤
=
2v2

g
[sin(2θ) tanβ + cos(2θ)]

R0(θ) = 0 when

tanβ =
− cos(2θ)
sin(2θ)

= − cot(2θ)
= − tan

³π
2
− 2θ

´
= tan

³
2θ − π

2

´
Hence β = 2θ − π/2, so
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θ =
1

2

³
β +

π

2

´
=

β

2
+

π

4
=

β◦

2
+ 45◦

(a) β = 10◦, θ = 50◦

(b) β = 0◦, θ = 45◦

(c) β = −10◦, θ = 40◦

46. One example: For golf, the results of
exercise 45 mean that if we want to
maximize distance on a level shot, the
ball should be hit so that the initial
angle is 45◦. If the target is β◦ above
or below the ball, we maximize the
distance by raising or lowering the ini-
tial angle by β◦/2.

47. T =
−1
c
ln

µ
1− c · b− a

v0

¶
b = 300, a = 0, v0 = 125, c = 0.1

T =
−1
0.1

ln

µ
1− 0.1 · 300− 0

125

¶
= 2.744 sec

T (x) = −10 ln(1− 0.0008(300− x))
− 10 ln(1− 0.0008x) + 0.1

T 0(x) =

−10
µ

0.0008

0.76 + 0.0008x
− 0.0008

1− 0.0008x
¶

= 0
0.0008(1 − 0.0008x) = 0.0008(0.76 +
0.0008x)

T 0(x) = 0 when x =
1− 0.76
0.0016

= 150

ft. T 0(x) < 0 on (0, 150)
T 0(x) > 0 on (150, 300)
Hence x = 150 minimizes the total
time.
T (150) =
− 10 ln(1− 0.0008(300− 150))

−10 ln(1−0.0008(150))+0.1
= 2.656 sec.

So the relay is faster.

If the delay is 0.2 sec, the relay takes
longer.

48. If it takes 0.1877 seconds of delay to
catch and relay the ball, then the
relay and the direct throw take the
same amount of time. It is difficult to
catch and throw again that fast. Re-
lays are important in baseball for the
increased accuracy of shorter throws
and the ability of fielders to change
targets to react to their opponent’s
actions.

49. T (x) = −10 ln
µ
1− 0.1300− x

125

¶¶
− 10 ln

³
1− 0.1 x

100

´
+ 0.1

= −10(ln(1− 0.0008(300− x))
− 10 ln(1− .001x) + 0.01

T 0(x) =

−10
µ

0.0008

0.76 + 0.0008x
− 0.001

1− 0.001x
¶

= 0
0.0008(1 − 0.001x) = 0.001(0.76 +
0.0008x)
T 0(x) = 0 when x = 25 ft.
T 0(x) < 0 on (0, 25)
T 0(x) > 0 on (25, 300)
Hence x = 25 minimizes the total
time.
T (25) = −10 ln(1− 0.0008(300− 25))

− 10 ln(1− 0.001(25)) + 0.1
= 2.838 sec.

So the relay takes longer. Without
the delay, the relay would take 2.738
sec, so a delay of 2.744 − 2.738 =
.006 sec makes the two times equal.

50. For any delay, the best relay is
halfway. For a delay of 0.1 s, the
time required for a relay throw is
Tr = −20 ln(1 − 15

v0
) + 0.1 and the

time required for a direct throw is
Td = −10 ln(1− 30

v0
). Solving Tr = Td

for v0 yields v0 = 165 feet per second.

51. A = 4xy
dA

dx
= 4 (xy0 + y)
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To determine y0 =
dy

dx
, use the equa-

tion for the ellipse:

1 =
x2

a2
+

y2

b2

0 =
2x

a2
+
2yy0

b2
2yy0

b2
= −2x

a2

y0 = − b2

a2
x

y
Substituting this expression for y0 into

the expression for
dA

dx
, we get

dA

dx
= xy0 + y

= x

µ
− b2

a2
x

y

¶
+ y

= − b2

a2
x2

y
+ y

The area is maximized when its
derivative is zero:

0 = − b2

a2
x2

y
+ y

b2

a2
x2

y
= y

x2

a2
=

y2

b2

Substituting the previous relationship
into the equation for the ellipse, we
get

x2

a2
=

y2

b2
=
1

2
and therefore,

x =
a√
2

and y =
b√
2

Thus, the maximum area is

A = 4
a√
2

b√
2
= 2ab

Since the area of the circumscribed
rectangle is 4ab, the required ratio is

2ab : πab : 4ab = 1 :
π

2
: 2

52. Let Vc be the volume of the cylinder,
h be the height of the cylinder and r
the radius of the cylinder so that

Vc = hπr2.

Let Vs be the volume of the sphere
and R be the radius of the sphere so
that

Vs =
4

3
πR3.

Draw the sphere on coordinate axes
with center (0, 0) and inscribe the
cylinder. Then draw a right triangle
as follows: draw a straight line from
the origin to the side of the cylinder
(this line has length r, the radius of
the cylinder); draw a line from this
point to the point where the cylinder
meets the sphere (this line has length
h/2, half the height of the cylinder);
connect this point with the origin to
create the hypotenuse of the triangle
(this line has length R, the radius of
the sphere). Thus we see that

R2 = r2 +

µ
h

2

¶2
.

Now we have

Vs =
4

3
π

µ
r2 +

h2

4

¶3/2
.

Taking the derivative of both sides
with respect to h gives

0 = 2π

µ
r2 +

h2

4

¶1/2µ
2rr0 +

h

2

¶
.

Solving for r0, we find r0 = −h/4r.
Taking the derivative with respect to
h of both sides of the formula for the
volume for the cylinder yields

dVc
dh

= πr2 + 2hπrr0.
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Plugging in the formula we found for
r0 gives

dVc
dh

= πr2 + 2hπr

µ−h
4r

¶
= πr2 − h2π

2
.

To maximize the volume of the cylin-
der, we set this equal to 0 and find
that the volume of the cylinder is
maximized when h2 = 2r2. In this
case, the formula relating R, r and h
above gives

h =

r
4

3
R2 =

2R√
3
.

The maximum volume of the cylinder
is then

Vc = hπr2

=
πh3

2
=

π
³
2R√
3

´3
2

=
1√
3

µ
4

3
πR3

¶
=

1√
3
Vs.

53. Suppose that a = b in the isoscles tri-
angle, so that

A2 = s(s−a)(s−b)(s−c) = s(s−a)2(s−c)

Since s = 1
2
(a+ b+ c), it follows that

s = 1
2
(2a + c) = a + c

2
, so that

s− a = c
2
. Thus,

A2 = s

µ
c2

4

¶
(s− c)

=
s

4

¡
sc2 − c3

¢
Since s is a constant (it’s half of the
perimeter), we can now differentiate
to get

2A
dA

dc
=

s

4

¡
2sc− 3c2¢

0 = c(2s− 3c)
Thus, the area is maximized when
2s − 3c = 0, which means c = 2

3
s.

Solving for a, we get

a = s− c

2
= s− s

3
=
2

3
s.

Thus, the area is maximized when
a = b = c; in other words the area is
maximized when the triangle is equi-
lateral.

The maximum area is

A =
p
s(s− c)3 =

r
s
³s
3

´3
=

s2

9

√
3 =

p2

36

√
3

3.8 Related Rates

1. V (t) = (depth)(area) = π
48
[r(t)]2

(units in cubic feet per min)

V 0(t) =
π

48
2r(t)r0(t) =

π

24
r(t)r0(t)

We are given V 0(t) = 120
7.5
= 16.

Hence 16 =
π

24
r(t)r0(t) so

r0(t) =
(16)(24)

πr(t)
.

(a) When r = 100,

r0(t) =
(16)(24)

100π
=
96

25π≈ 1.2223 ft/min,
(b) When r = 200,

r0(t) =
(16)(24)

200π
=
48

25π≈ 0.61115 ft/min

2. V = (depth)(area).
1

8

00
=
1

96

0
, so

V (t) =
1

96
πr(t)2.
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Differentiating we find

dV

dt
=
2π

96
r(t)

dr

dt
.

Using 1 ft3 = 7.5 gal, the rate of
change of volume is 90

7.5
= 12. So when

r(t) = 100,

12 =
2π

96
100

dr

dt
, and

dr

dt
=
144

25π
feet per minute.

3. From #1,

V 0(t) =
π

48
2r(t)r0(t) =

π

24
r(t)r0(t),

so
g

7.5
=

π

24
(100)(.6) = 2.5π,

so g = (7.5)(2.5)π

= 18.75π ≈ 58.905 gal/min.
4. If the thickness is doubled, then the
rate of change of the radius is halved.

5. t = hours elapsed since injury
r = radius of the infected area
A = area of the infection
A = πr2

A0(t) = 2πr(t) · r0(t)
When r = 3 mm, r0 = 1 mm/hr,
A0 = 2π(3)(1) = 6π mm2/hr

6. We have A0(t) = 2πrr0(t), and r0(t) =
1 mm/hr, so when the radius is 6 mm
we have

A0(t) = 2π · 6 · 1 = 12πmm2/hr

. This rate is larger when the radius
is larger because the area is changing
by the same amount along the entire
circumference of the circle. When the
radius is larger, there is more circum-
erence, so the same change in radius
causes a larger change in area.

7. V (t) =
4

3
π[r(t)]3

V 0(t) = 4π[r(t)]2r0(t) = Ar0(t)

If V 0(t) = kA(t), then

r0(t) =
V 0(t)
A(t)

=
kA(t)

A(t)
= k.

8. We have A0(t) = 2πrr0(t), and r0(t) =
5 ft/min, so when the radius is 200 ft
we have
A0(t) = 2π · 200 · 5 = 2, 000π ft2/min.

9.
102 = x2 + y2

0 = 2x
dx

dt
+ 2y

dy

dt
dy

dt
= −x

y

dx

dt

= −6
8
(3)

= −2.25 ft/s
10. We have

cos θ(t) =
x(t)

10
.

Differentiating with respect to t gives

− sin θ(t) · θ0(t) = x0(t)
10

.

When the bottom is 6 feet from the
wall, the top of the ladder is 8 feet
from the floor and this distance is
the opposite side of the triangle from
theta. Thus, at this point, sin θ =
8/10. So

− 8
10

θ0(t) =
3

10

θ0(t) = −3
8
rad/s.

11.

θ = π − tan−1
µ

40

60− x

¶
− tan−1

µ
20

x

¶
dθ

dx
= − 40

¡
1

60−x
¢2

1 +
¡

40
60−x

¢2 + 20
x2

1 +
¡
20
x

¢2
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When x = 30, this becomes

dθ

dx
= − 40

¡
1
30

¢2
1 +

¡
40
30

¢2 + 20
900

1 +
¡
20
30

¢2
= − 1

1625
rad/ft

dθ

dt
=

dθ

dx

dx

dt

=

µ
− 1

1625

¶
(4)

≈ −0.00246 rad/s
12. As in the solution to #11, let x be the

distance from the 200 building to the
person. To find the maximum θ, we
set dθ

dx
= 0 and solve for x:

0 = − 40
¡

1
60−x

¢2
1 +

¡
40
60−x

¢2 + 20
x2

1 +
¡
20
x

¢2
20

x2 + 40
=

40

(60− x)2 + 1

0 = 20x2 + 2400x− 56000
0 = x2 + 120x− 2800
Using the quadratic formula, we find
two roots:

x = −60± 80
We discard the x value obtained from
the minus sign as it is negative and
does not make sense for our problem.
The other value is x = 20. We find
θ0(10) > 0 and θ0(30) < 0, so x = 20
must be a maximum as desired.

13. We know [x(t)]2+42 = [s(t)]2. Hence
2x(t)x0(t) = 2s(t)s0(t), so

x0(t) =
s(t)s0(t)
x(t)

=
−240s(t)

x(t)
.

When x = 40, s =
√
402 + 42 =

4
√
101, so at that moment

x0(t) =
(−240)(4√101)

40
= −24

√
101.

So the speed is 24
√
101 ≈ 241.2mph.

14. From #13, we have

x0(t) =
s(t)s0(t)
x(t)

=
−240s(t)

x(t)
.

This time the height is 6 miles, so
s =

√
402 + 62 = 2

√
409, so at that

moment

x0(t) =
(−240)(2√409)

40
= −12

√
409.

So the speed is 12
√
409 ≈ 242.7mph.

The difference in height does not
make a large difference in the speed
of the plane.

15. If the police car is not moving, then
x0(t) = 0, but all the other data are
unchanged. So

d0(t) =
x(t)x0(t) + y(t)y0(t)p
[x(t)]2 + [y(t)]2

=
−(1/2)(50)p
1/4 + 1/16

=
−100√
5
≈ −44.721.

This is more accurate.

16. If the police car is at the intersection,
then the rate of change the police car
measures is

0 · (−40) + 1
2
· (−50)q

1
4
+ 0

= −50,

the true speed of the car.

17. d0(t) =
x(t)x0(t) + y(t)y0(t)p
[x(t)]2 + [y(t)]2

=
−(1/2)(√2− 1)(50)− (1/2)(50)p

1/4 + 1/4
= −50.
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18. The radar gun will read less than the
actual speed if the police car is not
at the intersection, and is travelling
away from the intersection.

19. C(x) = 10 +
100

x

C
0
(x(t)) =

−100
x2

· x0(t)
C
0
(10) = −1(2) = −2 dollars per

item, so average cost is decreasing at
the rate of $2 per year.

20. The year 2 rate of change for the av-
erage cost is given by

C
0
(t) =

−94
x2

· x0(t).

From the table we see that in year two
x = 9.4 and x0 = 0.6, so

C
0
(t) =

−94
9.42

·0.6 = −0.6383 per year.

21. From the table, we see that the re-
cent trend is for advertising to in-
crease by $2000 per year. A good es-
timate is then x0(2) ≈ 2 (in units of
thousands). Starting with the sales
equation
s(t) = 60− 40e−0.05x(t),
we use the chain rule to obtain
s0(t) = −40e−0.05x(t)[−0.05x0(t)]

= 2x0(t)e−0.05x(t).
Using our estimate that x0(2) ≈ 2
and since x(2) = 20, we get s0(2) ≈
2(2)e−1 ≈ 1.471. Thus, sales are in-
creasing at the rate of approximately
$1471 per year.

22. The rate of change of sales is
s0 = 0.8e−0.04xx0(t).
We are given x = 40 and x0(t) = 1.5,
so
s0 = 0.8e−0.04·40 ·1.5 = 0.242 thousand
dollars per year.

23. We have tan θ =
x

2
, so

d

dt
(tan θ) =

d

dt

³x
2

´
sec2 θ · θ0 = 1

2
x0

θ0 =
1

2 sec2 θ
· x0 = x0 cos2 θ

2

at x = 0, we have tan θ =
x

2
=
0

2
so

θ = 0 and we have x0 = −130ft/s so

θ0 =
(−130) · cos2 0

2
= −65 rad/s.

24. x = 2 tan θ, so
dx

dt
= 2 sec2 θ

dθ

dt
. θ = 0

(and sec θ = 1) as the ball crosses

home plate, so
dθ

dt
=
1

2

dx

dt
. For this

to be less than 3 radians per sec, the
pitch must be less than 6 ft/sec.

25. t = number of seconds since launch
x = height of rocket in miles after t
seconds
θ = camera angle in radians after t
seconds

tan θ =
x

2
d

dx
(tan θ) =

d

dx

³x
2

´
sec2 θ · θ0 = 1

2
x0

θ0 =
cos2 θ · x0

2

When x = 3, tan θ = 3/2, so cos θ =
2/
√
13.

θ0 =

³
2√
13

´2
(.2)

2
≈ .03 rad/s

26. If the height of the rocket is x, then
x = 2 tan θ, and

dx

dt
= 2 sec2 θ

dθ

dt
.
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When x = 1 and
dx

dt
= 0.2, we have

0.2 = 2 · 5
4
· dθ
dt
and

dθ

dt
= 0.08 radi-

ans per sec. This is larger because the
angle changes more quickly when the
rocket is close to the ground. When
the rocket is far away, large changes in
height result in small changes in the
angle, since the angle is approaching
a limit of π/2.

27. Let θ be the angle between the end of
the shadow and the top of the lamp-

post. Then tan θ =
6

s
and tan θ =

18

s+ x
, so

x+ s

18
=

s

6
d

dx

µ
x+ s

18

¶
=

d

dx

³s
6

´
x0 + s0

18
=

s0

6
x0 + s0 = 3s0

s0 =
x0

2

Since x0 = 2, s0 = 2/2 = 1 ft/s.

28. From #27, s0 = x0/2. Since x0 = −3,
s0 = −3/2 ft/s.

29. P (t) · V 0(t) + P 0(t)V (t) = 0

P 0(t)
V 0(t)

= −P (t)
V (t)

= − c

V (t)2

30. Solving Boyle’s Law for P gives P =
c

V
. Then differentiating gives

P 0(V ) =
−c
V 2
, the same as P 0(t)/V 0(t).

31. Let r(t) be the length of the rope at
time t and x(t) be the distance (along

the water) between the boat and the
dock.

r(t)2 = 36 + x(t)2

2r(t)r0(t) = 2x(t)x0(t)

x0(t) =
r(t)r0(t)
x(t)

=
−2r(t)
x(t)

=
−2√36 + x2

x

When x = 20, x0 = −2.088; when
x = 10, x0 = −2.332.

32. The volume of a cone is V = 1
3
πr2h,

and we know that this cone has r = h
2
,

so we have V = π
12
h3. Differentiating

gives
dV

dt
=

πh2

4
· dh
dt

.

We are given that
dV

dt
= 5m3/s, so

when h = 2 meters, we have

5 =
π22

4
· dh
dt
,

so
dh

dt
=
5

π
meters per second.

33. f(t) =
1

2L(t)

s
T

ρ
=
110

L(t)
.

f 0(t) =
−110
L(t)2

L0(t).

When L = 1/2, f(t) = 220 cycles per
second. If L0 = −4 at this time, then
f 0(t) = 1760 cycles per second per
second. It will only take 1/8 second
at this rate for the frequency to go
from 220 to 440, and raise the pitch
one octave.

34. V =
4

3
πr3

dV

dt
=
4

3
π(3r2)

dr

dt
= 4πr2

dr

dt

1 = 4πr2
dr

dt
dr

dt
=

1

4πr2
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When r = .01,
dr

dt
=
2500

π

When r = .1,
dr

dt
=
25

π
.

At first, the radius expands rapidly;
later it expands more slowly.

35. Let R represent the radius of the cir-
cular surface of the water in the tank.

V (R) = π
£
602(602 −R2)1/2−

1

3
(602 −R2)3/2 +

2

3
603
¸

dV

dR
= π

∙
602

µ
1

2

¶
(602 −R2)−1/2(−2R)−

1

3

µ
3

2

¶
(602 −R2)1/2(−2R)

¸
= π

∙ −602R√
602 −R2

+R
√
602 −R2

¸
= πR

∙−602 + 602 −R2√
602 −R2

¸
=

−πR3√
602 −R2

dR

dt
=

dV/dt

dV/dR

=
10

dV/dR

=
−10√602 −R2

πR3

(a) Substituting R = 60 into the
previous equation, we get dR

dt
=

0.

(b) We need to determine the value
of R when the tank is three-
quarters full. The volume of
the spherical tank is 4

3
π603, so

when the tank is three-quarters
full, V (R) = π603. Substitut-
ing this value into the formula
for V (R) and solving for R (us-
ing a CAS, for example) we get
R ≈ 56.265. Substituting this

value into the formula for dR/dt,

we get
dR

dt
=
−10√602 −R2

πR3

≈ −10
√
602 − 56.2652
π56.2653

≈ −0.00037 ft/s

36. Assuming the tank is at least half full,
we can represent the height of the wa-
ter in the tank by

h(t) =
√
602 −R2 + 60.

Differentiating gives

h0(t) =
1

2
(602 −R2)−1/2(−2R)R0(t)

= −(602 −R2)−1/2R ·R0(t)
=
−(602 −R2)−1/2R · (−10√602 −R2)

πR3
.

Here we have used the expression for
R0(t) found in exercise 35.

(a) Substituting R = 60 into
the previous equation, we get
h0(t) = 0.

(b) SubstitutingR ≈ 56.265 into the
formula for h0(t) gives h0(t) ≈
0.001006 ft/s.

37. The volume of the conical pile is V =
1
3
πr2h. Since h = 2r, we can write
the volume as

V =
1

3
π

µ
h

2

¶2
h =

1

12
πh3

Thus,

dV

dt
=

πh2

4
· dh
dt

20 =
π62

4
· dh
dt

dh

dt
=
20

9π
dr

dt
=
10

9π
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38. In this case, we have r = h so

V =
1

3
πh2h =

πh3

3

Thus V 0(t) = πh2h0(t) so when the
height is 6 feet,

h0(t) = r0(t) =
20

36π
=
5

9π
.

39.

θ = tan−1
µ
2s

vT

¶
dθ

dt
=

¡−2s
T

¢
v−2v0(t)

1 +
¡
2s
vT

¢2
=

−2sv0(t)
Tv2

£
1 + 4s2

v2T 2

¤
=
−2sTv0(t)
T 2v2 + 4s2

For T = 1, s = 0.6 and v0(t) = 1,
dθ

dT
=

−1.2
v2 + 1.44

(a) v = 1 m/s ⇒

dθ

dT
=
−1.2
2.44

≈ −0.4918 rad/s

(b) v = 2 m/s ⇒

dθ

dT
=
−1.2
5.44

≈ −0.2206 rad/s

3.9 Rates of Change in

Economics and the

Sciences

1. The marginal cost function is
C 0(x) = 3x2 + 40x+ 90.
The marginal cost at x = 50 is
C 0(50) = 9590. The cost of produc-
ing the 50th item is C(50)−C(49) =
9421.

2. The marginal cost function is
C 0(x) = 4x3 + 28x+ 60.
The marginal cost at x = 50 is
C 0(50) = 501460. The cost of produc-
ing the 50th item is C(50)−C(49) =
486645.

3. The marginal cost function is
C 0(x) = 3x2 + 42x+ 110.
The marginal cost at x = 100 is
C 0(100) = 34310. The cost of pro-
ducing the 100th item is C(100) −
C(99) = 33990.

4. The marginal cost function is
C 0(x) = 3x2 + 22x+ 40.
The marginal cost at x = 100 is
C 0(100) = 32240. The cost of pro-
ducing the 100th item is C(100) −
C(99) = 31930.

5. C 0(x) = 3x2 − 60x+ 300
C 00(x) = 6x− 60 = 0
x = 10 is the inflection point because
C 00(x) changes from negative to pos-
itive at this value. After this point,
cost rises more sharply.

6. A linear model doesn’t reflect the ca-
pacity of the stadium, or the pres-
ence of a certain number of fans who
would attend no matter what the
price, but away from the extremes a
linear model might serve adequately.
For ticket price x, the revenue func-
tion is
R(x) = x(−3, 000x+ 57, 000)

= −3, 000x2 + 57, 000x.
We solve
R0(x) = −6, 000x+ 57, 000 = 0
and find that x = 9.5 dollars per
ticket is the critical number. Since
R00 = −6, 000 < 0, this is a maxi-
mum.

7. C(x) = C(x)/x = 0.1x+ 3 +
2000

x
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C
0
(x) = 0.1− 2000

x2

Critical number is x = 100
√
2 ≈

141.4.

C
0
(x) is negative to the left of the crit-

ical number and positive to the right,
so this must be the minimum.

8. The average cost function is

C(x) =
0.2x3 + 4x+ 4000

x

= 0.2x2 + 4 +
4000

x
.

C
0
(x) = 0.4x− 4000

x2
= 0

when x ≈ 21.54. This is a minimum
because C

00
= 0.4 +

4000

x3
> 0 at this

x.

9. C(x) = C(x)/x = 10
e0.02x

x

C
0
(x) = 10e.02x

µ
.02x− 1

x2

¶
Critical number is x = 50. C

0
(x)

is negative to the left of the critical
number and positive to the right, so
this must be the minimum.

10. The average cost function is

C(x) =

√
x3 + 800

x
and

C
0
(x) =

x3 − 1600
2x2
√
x3 + 800

.

This is zero when x = 3
√
1600. This is

a minimum because

C
00
=
5, 120, 000 + 12, 800x3 − x6

4x3(x3 + 800)3/2
>

0 at this x.

11.

C(x) = 0.01x2 + 40x+ 3600

C 0(x) = 0.02x+ 40

C(x) =
C(x)

x
= 0.01x+ 40 +

3600

x
C 0(100) = 42

C(100) = 77

so C 0(100) < C(100)

C(101) = 76.65 < C(100)

12.

C 0(x) = 0.02x+ 40
C 0(1000) = 60

C(x) =
0.01x2 + 40x+ 3600

x
C(1000) = 53.6

C(1001) = 53.6064

13.

C
0
(x) = 0.01− 3600

x2
= 0

so x = 600 is min and

C 0(600) = 52

C(600) = 52

14. If C(x) = a+ bx, then C 0(x) = b and
C(x) = b+ a/x.

C
0
(x) = −a/x2 6= 0 for any x. The

average cost function has no extrema,
and is never equal to C 0(x) since
a/x 6= 0 for any x.

15. P (x) = R(x)− C(x)
P 0(x) = R0(x)− C 0(x) = 0
R0(x) = C 0(x)

16. P (x) = (10x−0.001x2)−(2x+5, 000).
P 0(x) = 8− 0.002x = 0 if x = 4, 000.
This is a maximum because P 00(x) =
−0.002 < 0.
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17. E =
p

f(p)
f 0(p)

=
p

200(30− p)
(−200) = p

p− 30
To solve

p

p− 30 < −1, multiply both
sides by the negative quantity p− 30,
to get p > (−1)(p−30) or p > 30−p,
so 2p > 30, so 15 < p < 30.

18. E =
pf 0(p)
f(p)

=
p(−200)
200(20− p)

=
p

p− 20
p

p− 20 < −1 when p > 20 − p, so

demand is elastic when 10 < p < 20.

19. f(p) = 100p(20− p) = 100(20p− p2)

E =
p

f(p)
f 0(p)

=
p

100p(20− p)
(100)(20− 2p)

=
20− 2p
20− p

To solve
20− 2p
20− p

< −1, multiply both
sides by the positive quantity 20 − p
to get 20 − 2p < (−1)(20 − p), or
20 − 2p < p − 20, so 40 < 3p, so
40/3 < p < 20.

20. E =
pf 0(p)
f(p)

=
p(600− 120p)
60p(10− p)

=
2p− 10
p− 10

If
2p− 10
p− 10 < −1 for positive p, then

p − 10 must be negative. this means
2p− 10
p− 10 < −1 when 2p−10 > 10−p,

so demand is elastic when
20

3
< p <

10.

21. Elasticity of demand at price p = 15
is, by definition, the relative change
in demand divided by the relative
change in price, as price increases
from 15 to an amount slightly larger

than 15. So if (rel change in de-
mand)/(rel change in price) is less
than (−1), then rel change in demand
is less than (−1)(rel change in price).
This means that demand goes down
more than price goes up, so revenue
should decrease. (See problem 23.)

22. If the demand is inelastic for a given
price, then raising the price will in-
crease revenue.

23. [pf(p)]0 < 0
if and only if p0f(p) + pf 0(p) < 0
if and only if f(p) + pf 0(p) < 0
if and only if pf 0(p) < −f(p)
if and only if

pf 0(p)
f(p)

< −1.

24. The percentage change in quantity
purchased (using the chain rule) is

Q0(I) · I 0
Q(I)

.

The percentage change in income is
I 0

I
.

The income elasticity of demand is
then
Q0(I) · I 0
Q(I)

· I
I 0
or

Q0(I) · I
Q(I)

.

25. f(x) = 2x(4− x)
f 0(x) = 2(4− x) + 2x(−1) = 8− 4x

= 4(2− x) = 0
x = 2 is a maximum since f(x) is a
downward opening parabola.

26. Re-write x0(t) as f(x) = 0.5x(5− x).
f 0(x) = 2.5 − x = 0 when x = 2.5.
This is a maximum since f 00(x) =
−1 < 0.

27. 2x0(t) = 2x(t)[4− x(t)] = 0
x(t) = 0, x(t) = 4 are critical num-
bers.
x0(t) > 0 for 0 < x(t) < 4
x0(t) < 0 for x(t) > 4
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So x(t) = 4 is the maximum concen-
tration.

x0(t) = 0.5x(t)[5− x(t)]
x(t) = 0, x(t) = 5 are critical num-
bers.
x0(t) > 0 for 0 < x(t) < 5
x0(t) < 0 for x(t) > 5
So x(t) = 5 is the maximum concen-
tration.

28. We need to find a function of the form
x0(t) = rx(t)(xmax − x(t)).
We are given xmax = 16, and x0(t) =
12 when x(t) = 8. So 12 = r ·8(16−8)
and r = 3/16. The equation is

x0(t) =
3

16
x(t)(16− x(t)).

29.

y0(t) = c · y(t)[K − y(t)]

y(t) = Kx(t)

y0(t) = Kx0(t)
Kx0(t) = c ·Kx(t)[K −Kx(t)]

x0(t) = c ·Kx(t)[1− x(t)]

= rx(t)[1− x(t)]

r = cK

30. The given conditions translate into
equations 3 = c · 2(K − 2) and 4 =
c ·4(K−4). Solving the first equation
for c and substituting into the second
equation gives

4 =
4 · 3(K − 4)
2(K − 2) ⇒ K = 8 and

c = 1/4.

31. x0(t) = [a− x(t)][b− x(t)]
for x(t) = a,
x0(t) = [a− a][b− a] = 0
So the concentration of product is
staying the same.

If a < b and x(0) = 0 then x0(t) > 0
for 0 < x < a < b

x0(t) < 0 for a < x < b
Thus x(t) = a is a maximum.

32. The mathematical minimum of the

function (x−a)(x− b) is a+ b

2
. Since

this is between a and b, the rate of
reaction is negative. The concentra-
tion of the product can never get this
large since it starts at 0 and cannot
grow past a. When the concentration
reaches a, the rate of reaction is 0, so
no more product is produced. There
are no critical values in the interval
[0, a]. x0 = ab > 0 when x = 0.
x0 = 0 at x = a. This makes x = a
the minimum reaction rate and x = 0
the maximum reaction rate.

33. x(0) =
a[1− e−(b−a)·0]
1− ¡a

b

¢
e−(b−a)·0

=
a[1− 1]
1− ¡a

b

¢ = 0
lim
t→∞

x(t) =
a[1− 0]
1− 0 = a

For a = 2 and b = 3 the graph looks
like this:

1

0.5

0

t

1086420

y

3

2.5

2

1.5

34. x0(t) =
ab(−b+ a)2e−(b−a)t

(−b+ ae−(b−a)t)2
.

For a = 2 and b = 3 the graph looks
like this:
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0

t

21.510.50

6

5

4

3

1

2

The limit lim
t→∞

x0(t) = 0 because the

numerator goes to 0 while the de-
nominator approaches b2. The reac-
tion rate decreases and approaches 0
asymptotically.

35. The first inflection point occurs
around f = 1/3, before the step up.
The second occurs at the far right of
the graph. The equivalence point is
presumably more stable. The first in-
flection point would be hard to mea-
sure, since the pH takes drastic leap
right after the inflection point occurs.

36. Recall that we are assuming 0 < f <
1. As f → 1−,

p0(f) =
1

f(1− f)
→∞

37. R(x) =
rx

k + x
, x ≥ 0

R0(x) =
rk

(k + x)2

There are no critical numbers. Any
possible maximum would have to be
at the endpoint x = 0, but in fact R
is increasing on [0,∞), so there is no
maximum (although as x goes to in-
finity, R approaches r).

38. To find
dV

dP
in the equationµ

P − n2a

V 2

¶
(V − nb) = nRT ,

we implicitly differentiate to get

µ
1 +

2n2a

V 3

dV

dP

¶
(V − nb)

+

µ
P − n2a

V 2

¶
dV

dP
= 0.

Solving for
dV

dP
gives:

dV

dP
=

nb− V
2n2a
V 3
(V − nb) + (P − n2a

V 2 )

This is the rate at which the volume
changes with respect to changes in
pressure.

39.
PV 7/5 = c

d

dP

¡
PV 7/5

¢
=

d

dP
(c) = 0

V 7/5 +
7

5
PV 2/5dV

dP
= 0

V +
7

5
P
dV

dP
= 0

dV

dP
=
−5
7

V

P
.

But V 7/5 = c/P , so V = (c/P )5/7.
Hence
dV

dP
=
−5
7

V

P

=
−5
7

(c/P )5/7

P
=
−5c5/7
7P 12/7

.

As pressure increases, volume de-
creases.

40. If the equation PV 1.4 = c holds, and
pressure decreases, then the volume
must increase.

41. m0(x) = 4 − cosx, so the rod is less
dense at the ends.

42. m0(x) = 3(x− 1)2 + 6.
Density is maximum at the ends and
at a minimum in the middle.

43. m0(x) = 4, so the rod is homogeneous.

44. m0(x) = 8x.
Density increases from 0 at the left
end to a maximum at the right end.
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45. Q0(t) = e−2t · (−2)(cos 3t− 2 sin 3t)
+ e−2t((− sin 3t · 3)− 2 cos 3t · 3)
= e−2t(−8 cos 3t+ sin 3t) amps

46. Q0(t) = et(3 cos 2t+ sin 2t)
+ et(−6 sin 2t+ 2 cos 2t)
= 5et(cos 2t− sin 2t) amps

47. As t → ∞, Q(t) → 4 sin 3t, so
e−3t cos 2t is called the transient term
and 4 sin 3t is called the steady-state
value.
Q0(t) = e−3t · (−3) cos 2t
+ e−3t(− sin 2t · 2) + 4 cos 3t · 3
= e−3t(−3 cos 2t− 2 sin 2t)
+ 12 cos 3t

The transient term is e−3t(−3 cos 2t−
2 sin 2t) and the steady-state value is
12 cos 3t.

48. Q0(t) = −2e−2t(cos t− 2 sin t)
+ e−2t(− sin t− 2 cos t)
+ e−3t − 3te−3t − 8 sin 4t

Q0(t) = e−2t(−4 cos t+ 3 sin t)
+ e−3t(1− 3t)− 8 sin 4t

The transient term is e−2t(−4 cos t +
3 sin t) + e−3t(1− 3t) and the steady-
state value is −8 sin 4t.

49. The rate of population growth is given
by
f(p) = 4p(5− p) = 4(5p− p2)
f 0(p) = 4(5− 2p),
so the only critical number is p = 2.5.
Since the graph of f is a parabola
opening down, this must be a max.

50. The rate of growth R = 2p(7−2p), so
R0 = 14− 8p = 0 when p = 7/4. This
is a maximum because R00 = −8 < 0.

51.

p0(t) =
−B(1 +Ae−kt)0

(1 +Ae−kt)2

=
−B(−kAe−kt)
(1 +Ae−kt)2

=
kABe−kt

(1 +Ae−kt)2

=
kABe−kt

1 + 2Ae−kt +A2e−2kt

=
kAB

ekt + 2A+A2e−kt

As t goes to infinity, the exponential
term goes to 0, and so the limiting
population is

B

1 +A(0)
= B.

52. If the inflection point is p = 120, then
the maximum population is B = 240.
If the initial population is p(0) = 40,
then

40 =
240

1 +A
.

We solve to get A = 5. If then
p(12) = 160, we have the equation

160 =
240

1 + 5e−12k

which we can solve to get

k =
ln 10

12
.

53. For a = 70, b = 0.2,

f(t) =
70

1 + 3e−0.2t
= 70(1+ 3e−0.2t)−1

f(2) =
7− 0

1 + 3e−0.2·2
≈ 23

f 0(t) = −70(1+3e−0.2t)−2(3e−0.2t)(−0.2)
=

42e−0.2t

(1 + 3e−0.2t)2

f 0(2) =
42e0.2·2

(1 + 3e−0.2·2)2
≈ 3.105
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This says that at time t = 2 hours,
the rate at which the spread of the ru-
mor is increasing is about 3% of the
population per hour.

lim
t→∞

f(t) =
70

1 + 0
= 70

so 70% of the population will eventu-
ally hear the rumor.

54. f 0(t) = −0.02e−0.02t + 0.42e−0.42t
f 0(t) = 0 when 0.42e−0.42t =
0.02e−0.02t, or e−0.4t = 0.02/0.42. So
we see that

t = − ln 0.047619
0.4

≈ 7.6113

is the critical value. The Second
Derivative Test shows that it is a
maximum.

55. f 0(x) =
−64x−1.4(4x−0.4 + 15)

(4x−0.4 + 15)2

− (160x
−0.4 + 90)(−1.6x−1.4)
(4x−0.4 + 15)2

=
−816x−1.4

(4x−0.4 + 15)2
< 0

So f(x) is decreasing. This shows
that pupils shrink as light increases.

56.

T (x) = 102− 1
6
x2 +

1

54
x3.

To maximize |T 0(x)|, we find all ex-
trema of T 0(x) and compare their
magnitudes.

T 0(x) =
−1
3
x+

1

18
x2.

T 00(x) =
−1
3
+
1

9
x = 0 when x = 3.

We test the critical numbers and the
endpoints: T 0(0) = 0, T 0(6) = 0, and
T 0(3) = −1

2
. The dosage that maxi-

mizes sensitivity is 3 mg.

57. If for some x marginal revenue equals
marginal cost, then
P 0(x) = R0(x)− C 0(x) = 0,
so x is a critical number, but it may
not be a maximum.

58. If R0(x0) = C 0(x0), then x0 is a crit-
ical number of P (x). If R00(x0) <
C 00(x0), then P 00 < 0, and the Sec-
ond Derivative Test guarantees that
x0 gives a maximum.

59. If v is not greater than c, the fish will
never make any headway.

E0(v) =
v(v − 2c)
(v − c)2

so the only critical number is v = 2c.
When v is large, E(v) is large, and
when v is just a little bigger than c,
E(v) is large, so we must have a min-
imum.

60. We wish to minimize P =
1

v
+ cv3.

P 0 =
−1
v2
+ 3cv2 = 0 when v =

4

r
1

3c
.

P 00 =
2

v3
+6cv > 0 at this velocity, so

this gives the minimum power.

Ch. 3 Review Exercises

1. f(x) = e3x, x0 = 0,
f 0(x) = 3e3x

L(x) = f(x0) + f 0(x0)(x− x0)
= f(0) + f 0(0)(x− 0)
= e3·0 + 3e3·0x
= 1 + 3x

2. f 0(x) =
2x

2
√
x2 + 3

.

f(1) = 2, and f 0(1) = 1/2.
L(x) = 1

2
(x− 1) + 2.

3. f(x) = 3
√
x = x1/3, x0 = 8

f 0(x) = 1
3
x−2/3
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L(x) = f(x0) + f 0(x0)(x− x0)
= f(8) + f 0(8)(x− 8)
= 3
√
8 + 1

3
(8)−2/3(x− 8)

= 2 + 1
12
(x− 8)

L(7.96) = 2 + 1
12
(7.96− 8) ≈ 1.99666

4. sin 3 is close to sinπ. If y = sinx,
y0 = cosx. The point is (π, 0) and
the slope is −1. The linear approxi-
mation of sinx at x = π is
L(x) = −(x− π), so
sin 3 ≈ −(3− π) ≈ 0.14159.

5. From the graph of f(x) = x3+5x−1,
there is one root.
f 0(x) = 3x2 + 5
Starting with x0 = 0, Newton’s
method gives x1 = 0.2, x2 =
0.198437, and x3 = 0.198437.

6. From the graph of f(x) = x3 − e−x,
there is one root.
f 0(x) = 3x2 + e−x

Starting with x0 = 1, Newton’s
method gives x1 = 0.8123, x2 =
0.7743, and x3 = 0.7729, which is ac-
curate to 4 decimal places.

7. Near an inflection point, the rate of
change of the rate of change of f(x)
is very small so there aren’t any big
dropoffs or sharp increases nearby to
make the linear approximation inac-
curate.

8. If y =
1

1− x
, then y0 =

1

(1− x)2
.

For “small” x, x is near 0. The point
on the curve when x = 0 is (0, 1), and
the slope is 1, so the linear approxi-
mation is L(x) = x + 1, and this is
valid for “small” x.

9. lim
x→1

x3 − 1
x2 − 1 is type

0
0
;

L’Hôpital’s Rule gives

lim
x→1

3x2

2x
=
3

2
.

10. lim
x→0

sinx

x2 + 3x
is type 0

0
;

L’Hôpital’s Rule gives

lim
x→0

cosx

2x+ 3
=
1

3
.

11. lim
x→0

e2x

x4 + 2
is type ∞∞ ;

applying L’Hôpital’s Rule twice gives:

lim
x→∞

2e2x

4x3

= lim
x→∞

4e2x

12x2
= lim

x→∞
8e2x

24x

= lim
x→∞

16e2x

24
=∞

12. lim
x→∞

(x2e−3x) = lim
x→∞

x2

e3x
is type ∞∞ ;

applying L’Hôpital’s Rule twice gives:

lim
x→∞

2x

3e3x

= lim
x→∞

2

9e3x
= 0

13.

L = lim
x→2+

¯̄̄̄
x+ 1

x− 2
¯̄̄̄√x2−4

lnL = lim
x→2+

µ√
x2 − 4 ln

¯̄̄̄
x+ 1

x− 2
¯̄̄̄¶

= lim
x→2+

Ã
ln
¯̄
x+1
x−2
¯̄

(x2 − 4)−1/2
!

= lim
x→2+

Ã ¯̄
x−2
x+1

¯̄ −3
(x−2)2

−x(x2 − 4)−3/2
!

= lim
x→2+

µ
3(x2 − 4)3/2

x(x+ 1)(x− 2)
¶

= lim
x→2+

µ
3(x− 2)1/2(x+ 2)3/2

x(x+ 1)

¶
lnL = 0

L = 1
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14. lim
x→∞

x ln

µ
1 +

1

x

¶
= lim

x→∞
ln
¡
1 + 1

x

¢
1
x

is type 0
0
so we can apply L’Hôpital’s

Rule:

lim
x→∞

1

(1+ 1
x)
(−x−2)
−x−2

= lim
x→∞

1¡
1 + 1

x

¢ = 1
15.

lim
x→0+

(tanx lnx) = lim
x→0+

µ
lnx

cotx

¶
= lim

x→0+

µ
1/x

− csc2 x
¶

= lim
x→0+

−
µ
sin2 x

x

¶
= − lim

x→0+

µ
sinx

x
sinx

¶
= (−1)(0) = 0

16. lim
x→0

tan−1 x
sin−1 x

is type 0
0
;

we can apply L’Hôpital’s Rule:

lim
x→0

1
1+x2

1√
1−x2

= lim
x→0

√
1− x2

1 + x2
= 1

17. f 0(x) = 3x2+6x− 9 = 3(x2+2x− 3)
= 3(x+ 3)(x− 1)

So the critical numbers are x = 1 and
x = −3.
f 0(x) > 0 on (−∞,−3) ∪ (1,∞)
f 0(x) < 0 on (−3, 1)
Hence f is increasing on (−∞,−3)
and on (1,∞) and f is decreasing on
(−3, 1). Thus there is a local max at
x = −3 and a local min at x = 1.
f 00(x) = 3(2x+ 2) = 6(x+ 1)
f 00(x) > 0 on (−1,∞)
f 00(x) < 0 on (−∞,−1)
Hence f is concave up on (−1,∞)
and concave down on (−∞,−1), and
there is an inflection point at x = −1.

18. f 0(x) = 4x3 − 4
f 0(x) = 0 when x = 1, and this is the
only critical number. The function is
decreasing for x < 1 and increasing
for x > 1.
f 00 = 12x2 > 0 when x = 1, so this
is a local minimum. f 00 = 0 when
x = 0, but does not change sign there,
so there are no inflection points. The
function is concave up everywhere.

19. f 0(x) = 4x3 − 12x2 = 4x2(x− 3)
x = 0, 3 are critical numbers.
f 0(x) > 0 on (3,∞)
f 0(x) < 0 on (−∞, 0) ∪ (0, 3)
f increasing on (3,∞), decreasing on
(−∞, 3) so x = 3 is a local min.
f 00(x) = 12x2 − 24x = 12x(x− 2)
f 00(x) > 0 on (−∞, 0) ∪ (2,∞)
f 00(x) < 0 on (0, 2)
f is concave up on (−∞, 0) ∪ (2,∞),
concave down on (0, 2) so x = 0, 2 are
inflection points.

20. f 0(x) = 3x2−6x−24 = 3(x−4)(x+2)
f 0(x) = 0 when x = 4 and x = −2.
The function is increasing for x < −2,
then decreasing for −2 < x < 4, and
increasing for x > 4. x = −2 rep-
resents a local maximum, and x = 4
represents a local minimum.
f 00(x) = 6x− 6
f 00(x) = 0 when x = 1, and changes
sign there, so x = 1 is an inflection
point. The function is concave down
for x < 1 and concave up for x > 1.

21. f 0(x) = e−4x + xe−4x(−4) = e−4x(1−
4x) x = 1/4 is a critical number.
f 0(x) > 0 on

¡−∞, 1
4

¢
f 0(x) < 0 on

¡
1
4
,∞¢

f increasing on
¡−∞, 1

4

¢
, decreasing

on
¡−1

4
,∞¢ so x = 1/4 is a local max.

f 00(x) = e−4x(−4)(1− 4x) + e−4x(−4)
= −4e−4x(2− 4x)

f 00(x) > 0 on
¡
1
2
,∞¢
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f 00(x) < 0 on
¡−∞, 1

2

¢
f is concave up on

¡
1
2
,∞¢, concave

down on
¡−∞, 1

2

¢
so x = 1/2 is in-

flection point.

22. f 0(x) = 2x lnx+ x = x(2 lnx+ 1)
f 0(x) = 0 when lnx = −1/2, so
x = e−1/2. (x = 0 is not a critical
number because it is not in the do-
main of the function.) The function
is decreasing for 0 < x < e−1/2, and
increasing for x > e−1/2. The critical
number x = e−1/2 represents a mini-
mum.
f 00(x) = 2 lnx+ 3
f 00(x) = 0 when x = e−3/2 and the
sign changes from negative to pos-
itive there, so this is an inflection
point. The function is concave down
for 0 < x < e−3/2 and concave up for
x > e−3/2.

23. f 0(x) =
x2 − (x− 90)(2x)

x4

=
−(x− 180)

x3
x = 180 is the only critical number.
f 0(x) < 0 on (−∞, 0) ∪ (180,∞)
f 0(x) > 0 on (0, 180)
f(x) is decreasing on (−∞, 0) ∪
(180,∞) and increasing on (0, 180) so
f(x) has a local maximum at x = 180.

f 00(x) = −x
3 − (x− 180)(3x2)

x6

= −−2x+ 540
x4

f 00(x) < 0 on (−∞, 0) ∪ (0, 270)
f 00(x) > 0 on (270,∞) so x = 90 is an
inflection point.

24. f 0(x) =
4x

3(x2 − 1)1/3
f 0(x) = 0 at x = 0 and is unde-
fined at x = ±1. The function is
decreasing for x < −1, increasing for
−1 < x < 0, decreasing for 0 < x < 1,
and increasing for 1 < x. Critical

numbers x = ±1 are minima, and
x = 0 is a maximum.

f 00(x) =
4(x2 − 3)
9(x2 − 1)4/3

f 00(x) = 0 when x = ±√3, and un-
defined for x = ±1. The function
is concave up for x < −√3, concave
down for −√3 < x < −1, concave
down for −1 < x < 1, concave down
for 1 < x <

√
3, and concave up for√

3 < x. The inflection points are
x = ±√3.

25. f 0(x) =
x2 + 4− x(2x)

(x2 + 4)2

=
4− x2

(x2 + 4)2

x = ±2 are critical numbers.
f 0(x) > 0 on (−2, 2)
f 0(x) < 0 on (−∞,−2) ∪ (2,∞)
f increasing on (−2, 2), decreasing on
(−∞,−2) and on (2,∞) so f had a
local min at x = −2 and a local max
at x = 2.
f 00(x) =
−2x(x2 + 4)2 − (4− x2)[2(x2 + 4) · 2x]

(x2 + 4)4

=
2x3 − 24x
(x2 + 4)3

f 00(x) > 0 on
¡−√12, 0¢ ∪ ¡√12,∞¢

f 00(x) < 0 on
¡−∞,−√12¢∪¡0,√12¢

f is concave up on
¡−√12, 0¢ ∪¡√

12,∞¢, concave down on¡−∞,−√12¢ ∪ ¡
0,
√
12
¢
so x =

±√12, 0 are inflection points.

26. f 0(x) =
2

(x2 + 4)3/2

f 0(x) is never zero and is defined for
all x, so there are no critical numbers.
The function is increasing for all x.

f 00(x) =
−6x

(x2 + 4)5/2

f 00(x) = 0 when x = 0. The function
is concave up for x < 0, concave down
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for x > 0, and the inflection point is
x = 0.

27. f 0(x) = 3x2 + 6x− 9
= 3(x+ 3)(x− 1)

x = −3, x = 1 are critical numbers,
but x = −3 /∈ [0, 4].
f(0) = 03 + 3 · 02 − 9 · 0 = 0
f(4) = 43 + 3 · 42 − 9 · 4 = 76
f(1) = 13 + 3 · 12 − 9 · 1 = −5
So f(4) = 76 is absolute max on [0, 4],
f(1) = −5 is absolute min.

28. First note that f(x) =
p
x(x− 1)(x− 2)

is only defined on [0, 1] ∪ [2,∞).
So we are looking at the intervals
[0, 1] ∪ [2, 3].

f 0(x) =
3x2 − 6x+ 2

2
√
x3 − 3x2 + 2x

The numerator has roots x = 3±√3
3
,

but f(x) is only defined at 3−
√
3

3
. The

denominator has zeros at x = 0, 1 and
2. Plus we have to check the values of
f at the endpoint x = 3. We find:
f(0) = 0

f(3−
√
3

3
) ≈ 0.6204

f(1) = 0
f(2) = 0
f(3) =

√
6 ≈ 2.4495

Thus f(x) has an absolute maximum
on this interval at x = 3 and absolute
minimums at x = 0, x = 1 and x = 2.

29. f 0(x) = 4
5
x−1/5

x = 0 is critical number.
f(−2) = (−2)4/5 ≈ 1.74
f(3) = (3)4/5 ≈ 2.41
f(0) = (0)4/5 = 0
f(0) = 0 is absolute min, f(3) = 34/5

is absolute max.

30. f 0(x) = 2xe−x − x2e−x = xe−x(2− x)
f 0(x) = 0 when x = 0 and x = 2.
We test f(x) at the critical numbers

in the interval [−1, 4], and the end-
points.
f(−1) = e ≈ 2.718
f(0) = 0
f(2) = 4/e2 ≈ 0.541
f(4) = 16/e4 ≈ 0.293
The absolute maximum is f(−1) = e,
and the absolute minimum is f(0) =
0.

31. f 0(x) = 3x2 + 8x+ 2

f 0(x) = 0 when

x =
−8±√64− 24

6
= −4

3
±
√
10

3

x = −4
3
−
√
10

3
is local max, x =

−4
3
+

√
10

3
is local min.

32. f 0(x) = 4x3 − 6x+ 2
= 2(x− 1)(2x2 + 2x− 1)

f 0(x) = 0 when x = 1 and x =
−1±√3

2
, and the derivative changes

sign at these values, so these critical
numbers are all extrema.

33. f 0(x) = 5x4 − 4x+ 1 = 0
x ≈ 0.2553, 0.8227
local min at x ≈ 0.8227,
local max at x ≈ 0.2553.

34. f 0(x) = 5x4 + 8x− 4
f 0(x) = 0 at approximately x =
−1.3033 and x = 0.4696 (found using
Newton’s method, or a CAS numer-
ical solver). The derivative changes
sign at these values so they corre-
spond to extrema: x = −1.3033 is
a local max and x = 0.4696 is a local
min.

35. One possible graph:



262 CHAPTER 3 APPLICATIONS OF DIFFERENTIATION

 

5

-5

 

5-5

36. One possible graph:
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37. f 0(x) = 4x3 + 12x2 = 4x2(4x+ 3)
f 00(x) = 12x2 + 24x = 12x(x+ 2)
f 0(x) > 0 on (−3, 0) ∪ (0,∞)
f 0(x) < 0 on (−∞,−3)
f 00(x) > 0 on (−∞,−2) ∪ (0,∞)
f 00(x) < 0 on (−2, 0)
f increasing on (−3,∞), decreas-
ing on (−∞,−3), concave up on
(−∞,−2) ∪ (0,∞), concave down on
(−2, 0), local min at x = −3, inflec-
tion points at x = −2, 0.
f(x)→∞ as x→ ±∞.
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38. f 0(x) = 4x3 + 8x

f 0(x) = 0 when x = 0.
f 00 = 12x2 + 8 > 0 at x = 0, so this
is a minimum. f 00(x) > 0 for all x so
there are no inflection points.
f(x)→∞ as x→ ±∞.
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39. f 0(x) = 4x3 + 4 = 4(x3 + 1)
f 00(x) = 12x2

f 0(x) > 0 on (−1,∞)
f 0(x) < 0 on (−∞,−1)
f 00(x) > 0 on (−∞, 0) ∪ (0,∞)
f increasing on (−1,∞), decreas-
ing on (−∞,−1), concave up on
(−∞,∞), local min at x = −1.
f(x)→∞ as x→ ±∞.

0

x

3210-1-2-3

20

y

100

80

60
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40. f 0(x) = 4x3 − 8x
f 0(x) = 0 when x = 0 and x = ±√2.
f 00 = 12x2 − 8 < 0 at x = 0, so this is
a maximum. f 00(x) > 0 for x = ±√2,
so these are minima.
f 00(x) = 0 when x = ±p2/3, and
changes sign there, so these are inflec-
tion points.
f(x)→∞ as x→ ±∞.
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x

321

40

0

30

20

-1

10

0
-2-3

41. f 0(x) =
x2 + 1− x(2x)

(x2 + 1)2

=
1− x2

(x2 + 1)2

f 00(x) =
−2x(x2 + 1)2 − (1− x2)2(x2 + 1)2x

(x2 + 1)4

=
2x(x2 − 3)
(x2 + 1)4

f 0(x) > 0 on (−1, 1)
f 0(x) < 0 on (−∞,−1) ∪ (1,∞)
f 00(x) > 0 on

¡−√3, 0¢ ∪ ¡√3,∞¢
f 00(x) < 0 on

¡−∞,−√3¢ ∪ ¡0,√3¢
f increasing on (−1, 1), decreasing on
(−∞,−1) and on (1,∞), concave up
on ³

−
√
3, 0
´
∪
³√
3,∞

´
,

concave down on

³
−∞,−

√
3
´
∪
³
0,
√
3
´
,

local min at x = −1, local max at
x = 1, inflection points at 0, ±√3.

lim
x→∞

x

x2 + 1
= lim

x→−∞
x

x2 + 1
= 0

So f has a horizontal asymptote at
y = 0.

0

-1

-2

x

420-2-4
y

2

1

42. f 0(x) = − x2 + 1

(x2 − 1)2
is undefined when f(x) is undefined,
and is never zero. There are no ex-
trema. There are vertical asymptotes
at x = ±1, and horizontal asymptote
y = 0.

f 00(x) =
2x(x2 + 3)

(x2 − 1)3

f 00(x) = 0 when x = 0, and this is
the inflection point: f(x) is concave
down on (−∞,−1) and (0, 1); f(x) is
concave up on (−1, 0) and (1,∞).
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2
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43. f 0(x) =
(2x)(x2 + 1)− x2(2x)

(x2 + 1)2

=
2x

(x2 − 1)2
f 00(x) =

2(x2 + 1)2 − 2x · 2(x2 + 1)2x
(x2 + 1)4

=
2− 6x2
(x2 + 1)3

f 0(x) > 0 on (0,∞)
f 0(x) < 0 on (−∞, 0)
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f 00(x) > 0 on
³
−
q

1
3
,
q

1
3

´
f 00(x) < 0 on

³
−∞,−

q
1
3

´
∪³q

1
3
,∞
´

f increasing on (0,∞) decreasing on
(−∞, 0), concave up onÃ

−
r
1

3
,

r
1

3

!
,

concave down onÃ
−∞,−

r
1

3

!
∪
Ãr

1

3
,∞
!
,

local min at x = 0, inflection points
at x = ±p1/3.

lim
x→∞

x2

x2 + 1
= lim

x→−∞
x2

x2 + 1
= 1

So f has a horizontal asymptote at
y = 1.

y
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1

0

-1

-2

x

420-2-4

44. f 0(x) = − 2x

(x2 − 1)2
f 0(x) = 0 when x = 0, and is unde-
fined when f(x) is undefined. There
is a local maximum at x = 0. There
are vertical asymptotes at x = ±1,
and horizontal asymptote y = 1.

f 00(x) =
2(3x2 + 1)

(x2 − 1)3
f 00(x) 6= 0 for any x, and there are
no inflection points: f(x) is concave

up on (−∞,−1)∪(1,∞) and concave
down on (−1, 1).
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45. f 0(x) =
3x2(x2 − 1)− x3(2x)

(x2 − 1)2
=

x4 − 3x2
(x2 − 1)2

f 00(x) =
(4x3 − 6x)(x2 − 1)2

(x2 − 1)4
− (x

4 − 3x2)2(x2 − 1)2x
(x2 − 1)4

=
2x3 + 6x

(x2 − 1)4
f 0(x) > 0 on

¡−∞,−√3¢ ∪ ¡√3,∞¢
f 0(x) < 0 on

¡−√3,−1¢ ∪ (−1, 0) ∪
(0, 1) ∪ ¡1,√3¢
f 00(x) > 0 on (−1, 0) ∪ (1,∞)
f 00(x) < 0 on (−∞,−1) ∪ (0, 1)
f increasing on (−∞,−√3) and on
(
√
3,∞); decreasing on (−√3,−1)

and on (−1, 1) and on (1,√3); con-
cave up on (−1, 0) ∪ (1,∞), concave
down on (−∞,−1)∪ (0, 1); x = −√3
local max; x =

√
3 local min; x = 0

inflection point. f is undefined at
x = −1 and x = 1.

lim
x→1+

x3

x2 − 1 =∞, and

lim
x→1−

x3

x2 − 1 = −∞

So f has vertical asymptotes at x = 1
and x = −1.
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46. f 0(x) = − 8x

(x2 − 1)2
f 0(x) = 0 when x = 0, and is
undefined when f(x) is undefined.
f(x) is increasing on (−∞,−1) and
(−1, 0); f(x) is decreasing on (0, 1)
and (1,∞). There is a local maxi-
mum at x = 0. There are vertical
asymptotes at x = ±1, and horizon-
tal asymptote y = 0.

f 00(x) =
8(3x2 + 1)

(x2 − 1)3
f 00(x) 6= 0 for any x, and there are no
inflection points. f(x) is concave up
on (−∞,−1) and (1,∞); f(x) is con-
cave down on (−1, 1).
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y
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47. d =
p
(x− 2)2 + (y − 1)2

=
p
(x− 2)2 + (2x2 − 1)2

f(x) = (x− 2)2 + (2x2 − 1)2
f 0(x) = 2(x− 2) + 2(2x2 − 1)4x

= 16x3 − 6x− 4
f 0(x) = 0 when x ≈ 0.8237
f 0(x) < 0 on (−∞, 0.8237)

f 0(x) > 0 on (0.8237,∞)
So x ≈ 0.8237 corresponds to the clos-
est point.
y = 2x2 = 2(0.8237)2 = 1.3570
(0.8237, 1.3570) is closest to (2, 1).

48. We compute the slope of the tan-
gent line to y = 2x2 at the closest
point (0.8237, 1.3570). When x =
0.8237, we get y0 = 3.2948. The
slope of the line between (2, 1) and
(0.8237, 1.3570) is

1− 1.3570
2− 0.8237 = −0.3035 =

−1
3.2948

,

so the lines are perpendicular.

49. C(x) = 6
p
42 + (4− x)2+2

√
22 + x2

C 0(x) =
6 · 1

2
[16 + (4− x)2]−1/2 · 2(4− x)(−1)
+ 21

2
(4 + x2)−1/2 · 2x

=
6(x− 4)p
16 + (4− x)2

+
2x√
4 + x2

C 0(x) = 0 when x ≈ 2.864
C 0(x) < 0 on (0, 2.864)
C 0(x) > 0 on (2.864, 4)
So x ≈ 2.864 gives the minimum cost.
Locate highway corner 4 − 2.864 =
1.136 miles east of point A.

50. Let F (v) = e−v/2. Then F 0(v) =
−0.5e−v/2, so F 0(v) < 0 for all v.
Thus F (v) is decreasing for all v. This
says that as the speed of contrac-
tion increases, the force produced de-
creases.

Let P (v) = ve−v/2. Then
P 0(v) = e−v/2(1− 1

2
v).

P 0(v) = 0 when v = 2. We check that
P 0(0) > 0 and P 0(4) < 0 so v = 2 is
in fact a maximum.

51. Area: A = 2πr2 + 2πrh
Convert to in3:
16 fl oz = 16 fl oz · 1.80469 in3/fl oz

= 28.87504in3
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Volume: V = πr2h

h =
Vol

πr2
=
28.87504

πr2

A(r) = 2π

µ
r2 +

28.87504

πr

¶
A0(r) = 2π

µ
2r − 28.87504

πr2

¶
2πr3 = 28.87504

r =
3

r
28.87504

2π
≈ 1.663

A0(r) < 0 on (0, 1.663)
A0(r) > 0 on (1.663,∞)
So r ≈ 1.663 gives the minimum sur-
face area.

h =
28.87504

π(1.663)2
≈ 3.325

52. If C(x) = 0.02x2 + 4x+ 1200,
then C 0(x) = 0.04x + 4 > 0 for posi-
tive values of x (number of items man-
ufactured). This must be positive be-
cause the cost function must be in-
creasing. It must cost more to manu-
facture more items.
C 00(x) = 0.04 > 0. This means
that the cost per item is rising as the
number of items produced increases.
(For an efficient process, the cost per
item should decrease as the number
of items increases.)

53. Let θ1 be the angle from the horizon-
tal to the upper line segment defin-
ing θ and let θ2 be the angle from
the horizontal to the lower line seg-
ment defining θ. Then the length of

the side opposite θ2 is
H − P

2
while

the length of the side opposite θ1 is

H + P

2
. Then

θ(x) = θ1 − θ2

= tan−1
µ
H + P

2x

¶
− tan−1

µ
H − P

2x

¶
and so

θ0(x) =
1

1 +
¡
H+P
2x

¢2 µ−H + P

2x2

¶
− 1

1 +
¡
H−P
2x

¢2 µ−H − P

2x2

¶
.

We set this equal to 0:

0 =
−2(H + P )

4x2 + (H + P )2
+

2(H − P )

4x2 + (H − P )2

and solve for x:

2(H + P )

4x2 + (H + P )2
=

2(H − P )

4x2 + (H − P )2

8x2(H + P )− 8x2(H − P )

= 2(H − P )(H + P )2

− 2(H + P )(H − P )2

8x2(2P ) = 2(H − P )(H + P )(2P )

x2 =
H2 − P 2

4

x =

√
H2 − P 2

2
.

54. From exercise 53 we know that

θ0(x) =
−2(H + P )

4x2 + (H + P )2
+

2(H − P )

4x2 + (H − P )2

and that the function θ(x) is maxi-
mized at

x =

√
H2 − P 2

2
.

Plugging in the appropriate H and P
values for high school shows that θ(x)
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is maximized by x ≈ 23.9792. This is
not in the range specified. In order
to find out whether θ(x) is increasing
or decreasing in the interval specified
we plug the H and P values into the
expression for θ0(x) and then plug in
a value in our interval, say 55. We
find that θ0(55) ≈ −0.00392. Since
this is negative, θ(x) is decreasing on
this interval, so the announcers must
be wrong.

Following the same procedure for
college, we find that θ(x) is maxi-
mized by x ≈ 17.7324 and θ0(55) ≈
−0.00412 so again the announcers
would be wrong.

Finally, for pros we see that θ(x) is
maximized at x = 0 and θ0(55) ≈
−0.0055 so the announcers would be
wrong once again. In this situation
there is no x value for which the an-
nouncers would be correct, but in the
high school and college situations, if
the field goal is taken from some x less
than the x which maximized θ(x), the
announcers would be correct.

55. Q0(t) = −3e−3t sin 2t+ e−3t cos 2t · 2
= e−3t(2 cos 2t− 3 sin 2t) amps

56. f(x) = 0.3x(4 − x), f 0(x) = 1.2 −
0.6x = 0 when x = 2, and changes
from positive to negative there, so
this represents a maximum.

57. ρ(x) = m0(x) = 2x
As you move along the rod to the
right, its density increases.

58. With no studying, the person scores

f(0) =
90

1 + 4
= 18.

f 0(x) =
144e−0.4t

(1 + 4e−0.4t)2
.

If the student were to study one hour,
the score will increase by approxi-
mately

f 0(0) =
144

25
= 5.76 points.

59. C 0(x) = 0.04x+ 20
C 0(20) = 0.04(20) + 20 = 20.8
C(20)− C(19) =
0.02(20)2 + 20(20) + 1800

− [0.02(19)2 + 20(19) + 1800]
= 20.78

60. C(x) =
0.02x2 + 20x+ 1800

x

= 0.02x+ 20 +
1800

x
,

C
0
(x) = 0.02− 1800

x2

C
0
(x) = 0 when x = 300, and the

derivative changes from negative to
positive here, so x = 300 gives the
minimum average cost.


