
Page 1 of 8

SULTAN QABOOS UNIVERSITY, COLLEGE OF SCIENCE

DEPARTMENT OF COMPUTER SCIENCE, FALL 2010

COMP3200: OBJECT ORIENTED PROGRAMMING

MIDTERM EXAM

November 14th, 2010 - Duration: 90 minutes

Question 1 (17 points): Mark the following statements as true or false:

Statement True/False

1. The C++ compiler generates physical copies of a function member of a class for each
class object

F

2. If an object is declared in the definition of a member function of the class, then the

object can access both the public and private members of the class
T

3. If the heading of a member function of a class ends with the word const, then the

function member cannot modify the private member variables, but it can modify

the public member variables

F

4. The constructor of a derived class specifies a call to the constructor of a base class in
the body of the constructor definition

F

5. A derived class can directly access the protected members of the base class T

6. In protected inheritance, public and protected members of the base class

become the protected members of the derived class
T

7. In the case of composition, you use the class name to invoke the base class’s
constructor.

F

8. To overload a member function of the base class, the name of the function and the
formal parameter list of the corresponding function in the derived class must be
same.

F

9. In C++, the dot operator has a lower precedence than the dereferencing operator F

10. Two pointer variables of the same type can be compared for equality T

11. Given the declarations

int list[10];

int *p;

the statement

list = p;

is valid in C++.

F

Page 2 of 8

12. A pointer variable can be passed as a parameter to a function either by value or by
reference.

T

13. Suppose that p and q are pointers of type int. The statement p = q; will result in

shallow copying of data.
T

14. C++ does not allow the user to pass an object of a derived class to a formal
parameter of the base class type.

F

15. The binding of virtual functions occurs at program execution time. T

16. An abstract class does not need to provide the definitions of the member functions
that are not pure virtual because you cannot create objects of the abstract class.

F

17. It is not necessary to include the copy constructor in classes with pointer member
variables

F

Question 2 (15 points): select the most appropriate answer for each of the following questions

1. A class object can be ____________. That is, it can be created once, when the control
reaches its declaration, and destroyed when the program terminates.

a. local

b. automatic

c. static

d. public

2. In C++, you can pass a variable by reference and still prevent the function from changing
its value, by using the keyword ______________ in the formal parameter declaration.

a. const

b. static

c. private

d. automatic

3. To ____________ a public member function of a base class in the derived class, the

corresponding function in the derived class must have the same name, number, and
types of parameters.

a. overload

b. redefine

c. rename

d. reuse

Page 3 of 8

4. If the derived class classD overrides a public member function functionName of the

base class classB, then to specify a call to that public member function of the base

class you use the _________________ statement.

a. classD.functionName();

b. classB::functionName();

c. classB.functionName();

d. classD::functionName();

5. Which of the following statements is true about protected inheritance?

a. The private members of the base become protected members of the derived.

b. The protected members of the base become private members of the derived.

c. The public members of the base become protected members of the derived.

d. The derived can directly access any member of the base.

6. ______________ is the ability to use the same expression to denote different operations.

a. Polymorphism

b. Inheritance

c. Composition

d. Encapsulation

7. C++ provides _______________ functions as a means to implement polymorphism in an
inheritance hierarchy, which allows the run-time selection of appropriate member
functions.

a. overloaded

b. overridden

c. redefined

d. virtual

Page 4 of 8

8. In a _______________ copy, two or more pointers of the same type point to the same
memory.

a. shallow

b. deep

c. dynamic

d. static

9. The _____________ constructor is called when an object is passed as a (value)
parameter to a function.

a. copy

b. default

c. struct

d. class

10. What is the output of the following code?

int *p;

int x = 12;

p = &x;

cout << x << ", ";

*p = 81;

cout << *p << endl;

a. 81, 12

b. 81, 81

c. 12, 12

d. 12, 81

11. If you overload the binary arithmetic operator + as a member function, how many objects

must be passed as parameters?

a. zero

b. one

c. two

d. three

Page 5 of 8

12. Every object of a class maintains a (hidden) pointer to itself, and the name of this pointer
is ____________.

a. this

b. self

c. it

d. object

13. A(n) ______________ function is a nonmember function that has access to all members

of the class.

a. virtual

b. friend

c. void

d. protected

14. A class ____________ automatically executes whenever a class object goes out of scope.

a. pointer

b. exception

c. constructor

d. destructor

15. In _____________ binding, the necessary code to call a specific function is generated by
the compiler.

a. static

b. shallow

c. dynamic

d. deep

Page 6 of 8

Question 3 (7 points): write C++ code to declare a dynamic two dimensional array “triangle” that

consists of 5 rows of different number of columns (as shown). Also initialize the array to the values

shown in the figure? You must not use initializer lists.

1 2

3 4 5

6 7 8 9

10 11 12 13 14

15 16 17 18 19 20

 int rows = 5;

 int **triangle;

 triangle = new int*[rows];

 int value = 1;

 for (int i=0; i<rows; i++) {

 triangle[i] = new int[i+2];

 for (int j=0; j<i+2; j++) {

 triangle[i][j] = value;

 value++;

 }

 }

Page 7 of 8

Question 4 (6 points): given the class definition and implementations of firstClasss and

secondClass below, what is the output of the following main program?

class firstClass {

int x;

public:

virtual void print() const;

virtual void changeNumber();

firstClass(int a=0);

};

void firstClass::print() const {

 cout << "First Class x = " << x << endl;

}

void firstClass::changeNumber() {

 x = 2*x;

}

firstClass::firstClass(int a) {

x = a;

}

class secondClass : public firstClass {

int y;

public:

void print() const;

void changeNumber();

secondClass(int a=0, int b=0);

};

void secondClass::print() const {

 firstClass::print();

cout << "Second Class y = " << y << endl;

}

void secondClass::changeNumber() {

 firstClass::changeNumber();

 y = y*2;

}

secondClass::secondClass(int a, int b) : firstClass(a) {

 y = b;

}

int main() {

firstClass obj1(2);

secondClass obj2(3, 5);

firstClass * ptr = &obj1;

ptr->changeNumber();

ptr->print();

ptr = &obj2;

ptr->changeNumber();

ptr->print();

return 0;

}

Output:

First Class x = 4

First Class x = 6

Second Class y = 10

Page 8 of 8

Question 5 (15 points): write class definition and implementation for a class “Grades” that represents

student’s grades in an exam. The data members of the grades class are a dynamic array of integer

grades, the maximum capacity of the array and the actual number of grades in the array. Please note

the following:

 You don’t need to provide any accessor or mutator functions.

 Provide appropriate constructor(s), copy constructor and destructor

 Override the equality operator == for the Grades class. Two objects are considered equal only if

they contain exactly same grade lists.

class Grades {

 int *list;

 int size, max;

public:

 Grades(int m=100);

 Grades(const Grades& obj);

 ~Grades();

 bool operator==(const Grades& other) const;

};

Grades::Grades(int m) {

 max = m;

 size = 0;

 list = new int[max];

}

Grades::Grades(const Grades &obj) {

 max = obj.max;

 size = obj.size;

 list = new int[max];

 for (int i=0; i<size; i++)

 list[i] = obj.list[i];

}

Grades::~Grades() {

 delete [] list;

}

bool Grades::operator==(const Grades &other) const {

 if (size==other.size && max==other.max) {

 for (int i=0; i<size; i++)

 if (list[i] != other.list[i])

 return false;

 return true;

 }

 return false;

}

