CHAPTER 7

Section 7-2

= 2 1 (& 1
7.1, E(x)=g =2 — :—E(ZXiJ:—(Znu):u
2n 2n o 2n

X,and X, are unbiased estimators of .

=\ o’ -\ o
The variances are V (X 1 ) = and V (X 2) =—; compare the MSE (variance in this case),
n n

MSE@) _c*/2n _n _1
MSE@®,) o*In 2n 2
Since both estimators are unbiased, examination of the variances would conclude that X; is the “better”

estimator with the smaller variance.

~ 1 1 1
B(6)= 2 [ECx) + EO6) 4+ B =2 TB00) == T = 4

7-2.
( ~ ) 1 1
E|6, =5[E<2X1> +E(Xq)+ E(X7)]=5[2ﬂ—ﬂ+ﬂ] =4
a) Both él and éz are unbiased estimates of [ since the expected values of these statistics are
equivalent to the true mean, L.
- X+ X, +..+X 1 1 1
b V(e )=v| L2 T TR o (VX )+ V(X)) 4+ V(X)) =— (T ==
vie) { . A UC ORI (X7))=5 (70" ==
2
A o
e
- 2X, - X+ X 1 1
\% (@)zV{%} :?(V(ZXI) +V(Xg) +V(X4)):Z(4V(X1) +V(Xe)+V(Xy))
1
= —(4(52 +6° +<52)
4
1 2
= —(60
1 (667)
A 30’
e
Since both estimators are unbiased, the variances can be compared to decide which is the better
estimator. The variance of @1 is smaller than that of @2 , @1 is the better estimator.

7-3. Since both é?l and @2 are unbiased, the variances of the estimators can be examined to determine which
is the “better” estimator. The variance of éz is smaller than that of él thus éz may be the better
estimator.

MSE@) V(@) 1
Relative Efficiency = J = ﬁ 1055
MSE@,) V6, 4
7-4. Since both estimators are unbiased:
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7-5.

7-6.

Relative Efficiency =

MSE(6))
MSE(6,)

E®)=6

_8_
2
V(6)=10

MSE@®,) _V(@®©,) _o’/7 _2
MSE@®,) V(@®,) 30°/2 21

V(©,) 10

=—=25

V6, 4

E©,)=61/2
Bias = E(O,) -0

6

2
V (0, =4

For unbiasedness, use @1 since it is the only unbiased estimator.
As for minimum variance and efficiency we have:
(V(8,) + Bias?),

Relative Efficiency = = 3
V(6,) + Bias”),

where, Bias for 6,is 0.

Thus,

Relative Efficiency = 10+0) ___ 40

2\ 2
i [ ;e) (16 +8 )
2
If the relative efficiency is less than or equal to 1, él is the better estimator.
40

Use @l,when ——-<1
(16+67)

40<(16+6%)
24 <92

6 <-4899 or 6 =4899

If —4.899 < 6 < 4.899 then use @, .

For unbiasedness, use @1 . For efficiency, use @1 when 0 < -4.899 or 6 > 4.899 and use @2 when
—4899 <6 <4899 .

E©)=6 No bias V(6,)=12=MSE(®),)
E(O,)=6 No bias V(0,)=10=MSE(®,)
E(O,)#0 Bias MSE(O;)=6 [note that this includes (bias)]
To compare the three estimators, calculate the relative efficiencies:
M =£ =1.2, sincerel. eff. > 1 use @2 as the estimator for 6
MSE(®,) 10

M =£ =2, since rel. eff. > 1 use @3 as the estimator for 6
MSE(®,) 6

M =E =1.8, sincerel. eff. > 1 use @3 as the estimator for 6
MSE(@;) ©6

Conclusion:

@3 is the most efficient estimator with bias, but it is biased. @2 is the best “unbiased” estimator.



7-8.

7-9.

ny =20,n2= 10,n3=8
Show that S? is unbiased:

E(Sz): P 2057 +10S3 +857
38

(£Q0s2)+ Eflos2 )+ Elgs2))

w
ool'_

1
- (2062 +1052 + 852 )

:%(380'2)

=c?

- S%is an unbiased estimator of & .
2
n p—
Z (X i~ X )

Show that =L— is a biased estimator of 6° :

a)

Xl %)

n

X2 -nX 2
b) Bias:EF(z—"]_az A S i

is a biased estimator of &° .

n

c) Bias decreases as n increases.
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7-10

a) Show that X ?is a biased estimator of K. Using E(Xz) =V(X)+ [E(X)]2

- X?is a biased estimator of uw?

2 02

. = o
b) Bias = E(Xz)—ﬂ2 =—+ﬂ2 —,u2 =—
n n
¢) Bias decreases as n increases.

a.) The average of the 26 observations provided can be used as an estimator of the mean pull force
since we know it is unbiased. This value is 75.615 pounds.

b.) The median of the sample can be used as an estimate of the point that divides the population
into a “weak” and “strong” half. This estimate is 75.2 pounds.

c.) Our estimate of the population variance is the sample variance or 2.738 square pounds.
Similarly, our estimate of the population standard deviation is the sample standard deviation
or 1.655 pounds.

d.) The standard error of the mean pull force, estimated from the data provided is 0.325 pounds.
This value is the standard deviation, not of the pull force, but of the mean pull force of the
population.

e.) Only one connector in the sample has a pull force measurement under 73 pounds. Our point
estimate for the proportion requested is then 1/26 = 0.0385
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7-12.  Descriptive Statistics

Variable N Mean Median TrMean StDev SE Mean
Oxide Thickness 24 423.33 424 .00 423.36 9.08 1.85

a) The mean oxide thickness, as estimated by Minitab from the sample, is 423.33
Angstroms.

b) Standard deviation for the population can be estimated by the sample standard
deviation, or 9.08 Angstroms.

c) The standard error of the mean is 1.85 Angstroms.

d) Our estimate for the median is 424 Angstroms.

e) Seven of the measurements exceed 430 Angstroms, so our estimate of the proportion
requested is 7/24 = 0.2917

713 a)
1

1 1
E(X)= J-xl(1+0x)dx= jlxdx+.[€x2dx
52 2 %2

-1

=0+

0_9
303

b) Let X be the sample average of the observations in the random sample. We know
that E(X) = M , the mean of the distribution. However, the mean of the distribution is 6/3, so

@ =3 X is an unbiased estimator of 6.

714 a) E(p)=E(X/n) =%E(X) =%np =p

R (11— [p-(-
b.) We know that the variance of p is M so its standard error must be M .To
n n

estimate this parameter we would substitute our estimate of p into it.

7.15 a.) E(il—)?z):E(fl)—E(iz)Zﬂl—ﬂz

—= = = == o~ O
b) se.=V(X, = X,) = V(X)) +V(X,)+2COV(X,,X,) = [“+ 22
n n,
This standard error could be estimated by using the estimates for the standard deviations

of populations 1 and 2.
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7-16

(n,-1-8,> +n, —1)-S,> 1 ) 2
ES %) =E . 1 2 2| = n, —DES,* )+, —1)- E(S,%)|=
s, { p—" 2 TDEG) (=D EGS;7)
1 2 2 n+n,-2 , 2
= n--o0 +(n, -0 =——= 0°=0
n1+n2—2[( A )] n+n, -2

7-17  a) E(Q) = E(@X; +(1-@)X,) = aE(X))+ (- @) E(X,) = ou+(1-a)u=u

b.)
AN ~a Y N _ 20y 2
s.e.(,u)—\/V(aX1+(1—a)X2) —\/a ViX)+d-a)'V(X,)
2 2 2 2
o o o o
= o’ —+(1-a) == o’ —+(1-a)’a—
n n, n n,
2 2
an,+(1-a) an
g [@mri-a)an
nn,
c.) The value of alpha that minimizes the standard error is:
=M
n, +an,

b.) With a =4 and n;=2n,, the value of alpha to choose is 8/9. The arbitrary value of a=0.5 is too small and
will result in a larger standard error. With 0=8/9 the standard error is

N 8/9) ny +(1/9)*8n, 0.6670,
s.e(ll) =0, >
2n, N
If a=0.5 the standard error is

(0.5)°n, +(0.5)°8n, _1.06070,

se()=0 =
: 2n22 NI

X, X 1 1 1 1
7-18 a.) E(—l——z)=—E(X1)——E(X2)=—H1P1 ——nmypy =p;— Py =E(p,—py)
n n, n; n, ny n,

b) \/p1<1—p1)+p2<1—p2)

n )
. . . X, X,
c.) An estimate of the standard error could be obtained substituting — for p; and —
n )

for p in the equation shown in (b).

d.) Our estimate of the difference in proportions is 0.01

e.) The estimated standard error is 0.0413
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Section 7-3

e—ﬂ.ﬂx n e_ﬂﬂ,xi B e_"ﬂ/?, P

7-19. X) = LA)=
fo=—= =]~ "=
! Hxi!
i-1
1nL(ﬂ)=—nﬂlne+Zn:xilnﬂ—Zn: In x,!
i=1 i=1

dInL(A) 13
——=-—n X;
dA AT

n —li(x -6) —ﬂ[ix —ru9]
7-20.  f() =27 for x20 L) =[[AF = e = Qe |

i=1
InL(1.6) =—nln A- 23 x, - In®
i=1
dInL(A,6) no3
GMUAT T N —nf=0
dA PR

5 1
A==
x—6
*Zn: (X/—s)
Let A=1then L(f)=e ™~ for x;,0
7ixx—m9 _
L@)=e = =0

LnL(6)=n6—nx
@ cannot be estimated using ML equations since
dLnL(0)

20) =0. Therefore, @ is estimated using Min(X,,X,,...,X,) .

Ln(8) is maximized at x,,;, and 6= Xpnin

b.) Example: Consider traffic flow and let the time that has elapsed between one car passing a fixed point

and the instant that the next car begins to pass that point be considered time headway. This headway
can be modeled by the shifted exponential distribution.

Example in Reliability: Consider a process where failures are of interest. Say that a sample or

population is put into operation at x = 0, but no failures will occur until 6 period of operation. Failures
will occur after the time 6.




721 f(x)=p(l-p)~"

Lp =] pa-p*

\ ¢
=p (I-p)~

InL(p) =n1np+(ixi —n]ln(l—

i=1

b p l-p

n—np—pzn:xi + pn

i=1

p(—p)
Ozn—prl.
i=1
. n
p=-
X

i=1

722, f(x)=@+1Dx°

L(§) = ﬁ(0+ Dx’ =@ +Dx’x(@+Dx,’ x...

i=1
=@+D"[] «°
i=l
InL(6)=nIn(@+1)+6Inx +OInx, +...

=nIn@+1)+63 Inx,

i=1

§lnL(9): n +3 Inx =0
6 o+1 o
n n
== Inx
6+1 ; '
b=—"— 1
-> Inx
i=l1

P)
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723, a)

< 1 X A
nL(8.8) - Sl |- Z[E’j
=nin@)+(B-DY Inl%)-3 ()

b)
&IHL( ,6) X; x; | x;
LD 15} sl
IILBS) __n_ o on o 3xf

R R AT

equal to zero, we obtain

Upon setting m%;'ﬂ,b‘)

R
5ﬂn22xiﬂ and 5:{&]
n

. JdInL(p, oo .
Upon setting %ﬁﬁ) equal to zero and substituting for 8, we obtain

B
%+ >lnx —nln§:5—lﬁZ:xf(lnxi —Ino)

n n. (s n 5 n 51 [zx.ﬁJ
—+ Y Inx, —In| == |=——= > x’Inx, ——= ) x/ —In| =~
z i ﬁ [ n j leﬁz i i leﬁz i B n
B
andi: > x lnxi+21nxi
D

¢) Numerical iteration is required.

YR B S FR P CALE S
n i=1

oo

a-0 12 = N =
7-25 E(X)= > Z—ZXiZX,therefore: a=2X

ni—

The expected value of this estimate is the true parameter so it must be unbiased. This estimate is
reasonable in one sense because it is unbiased. However, there are obvious problems. Consider
the sample x;=1, x,=2 and x3=10. Now x =4.37 and a=2x=8.667. This is an unreasonable

estimate of a, because clearly a > 10.
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7-26.  a) d cannot be unbiased since it will always be less than a.
na a(n+1 a
_4 ) =- - 0.
n+1 n+1 n+1 noe

b) bias =
02X

d) P(Y<y)=P(X|, ....X, £ y)=(P(X,<y))"'= (lj . Thus, f(y) is as given. Thus,
a

bias=E(Y)-a = —-a=- a .
n+l1 n+l1
7-27 For any n>1 n(n+2) > 3n so the variance of 612 is less than that of &1 . It is in this sense that the second estimator is
better than the first.
7-28
n x,-e_x'/ 0 X;
L(H) = HT lnL(H) ZZln(xl)—Zg—annﬁ
i=1
dln L(6 1 2
9InL(®) _ L
00 6?2 6
setting the last equation equal to zero and solving for theta, we find:
n
2%
é — =l
2n
2 L)
7-29  a) E(X“)=20=—> X;" so
=1
6= if X/
- 2n i=1 '
b)
n o /20 5.2
LO) =[]+ InL(@) =Y In(x;) - Y.~ —-nlné
i=1 20
dlnL(@ 1
nL@®) _ 2 n
00 262 6

which is the same result we obtained in part (a)
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9

[ 2
[f()dx=05=1-¢"%
0

a =,/—261In(0.5)

We can estimate the median (a) by substituting our estimate for theta into the
equation for a.

1 2 1
730 a) jc(l+6k)dx=l=(cx+c0%) = 2c
_1 _1

so the constant ¢ should equal 0.5

b)
12 (7
EX)==YX,=—
I’li=1 3
1 n
0:3 _ZXI
i=l1
c)
A 1o _ _ 8
E@)=E|3 =YX, |=EGX)=3E(X)=32=6
ni;—1 3
d)

L@ =TT50+6X) InL®)=nin()+ S in1+6K))
i=1 i=1

InLO) _ ¢ X,
90  iSd+6X)

by inspection, the value of 0 that maximizes the likelihood is max (X;)



7-31

a)Using the results from Example 7-12 we obtain that the estimate of the mean is 423.33 and the estimate of
the variance is 82.4464
b)

The function seems to have a ridge and its curvature is not too pronounced. The maximum value for std
deviation is at 9.08, although it is difficult to see on the graph.

7-32  When n is increased to 40, the graph will look the same although the curvature will be more pronounced.
As n increases it will be easier to determine the where the maximum value for the standard deviation is on
the graph.

Section 7-5

733 P(1.009< X <1.012) = P[1.009—1.01 < X-u o 1‘012—1‘01)

7-34.

0.003/y9 ~ o/n T 0.003/4/9

=P-1<Z<2)=P(Z<2)-P(Z<-])

=0.9772-0.1586 = 0.8186

X; ~ N(100,10%) n=25

Uz =100 o = i :i:z

X~ x‘ﬁ JE

P[(100—1.8(2)) < X < (100 +2)] = P(96.4< X <102)

4 X-p _ 102-100
_ p 964-100 o <
2 0’/«/; 2

=P(-18<Z<)=P(Z<1)-P(Z<-1.8)

=0.8413-0.0359 = 0.8054
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9 _33 1429

Jn o )
P()?Z 75.75) = P(f/— > 75.75—75.5)

)7
Jn 1.429

=P(Z 20.175)=1- P(Z £0.175)

=1-0.56945 = 0.43055

7-36.
n=06 n =49
o= 35 .= 233
RN RV T
=1.429 =05
05 isreduced by 0.929 psi
7-37. Assuming a normal distribution,
_ .0 _0_
Uy =2500 o NP 22.361
P(2499< X <2510) = P[220 < Ko < 20230
= P(-0.045<72<0.45)=P(Z <£0.45)—- P(Z £-0.045)
=0.6736-0.4821=0.1915
7-38. oy = % = 5—2 =122.361psi = standard error of X

7-39. c?=25

1.11~12
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7-40.

7-41.

7-42.

Let Y =X -6

a+b _(0+1)
/uX: 5 = > :7
Hg = Hx
0_2_(b—a)2 _1
X 12 12

2
» 9 51
O =—=—"=—
X n 12 144
oO- =

My =3-6=-57

2 _ 1
oy =+

Y=X-6~N(-5L

n=36
a+b  (+1)
= = -9
2 2
\/(b—a+1)2—1 \/(3—1+1)2—1 \/? \/E
O-X: = = |— = [=
12 12 12 V3
‘u7—2o',—ﬂ—ﬂ
X > X & 6
z—)?_’u
" o/n

Using the central limit theorem:

V2/3 2/3

PR1<X <25 = P[ 2122 o 7 ¢ ZHJ

6 6

= P(0.7348 < Z < 3.6742)
= P(Z < 3.6742) — P(Z < 0.7348)

=1-0.7688 =0.2312

1
) 7@) , approximately, using the central limit theorem.

puy = 8.2 minutes n=49

ox = 1.5 minutes __6ox__15 ~0.2143
X dn Va9

Uy =ux =82 mins

Using the central limit theorem, X is approximately normally distributed.

— 10_
a) P(X <10)=P(Z<
) P( ) = P( 021

b) P(5<)?<10):P(%<Z<%)

8.2
=P(Z<84)=1
43) ( )

=P(Z<84)-P(Z<-14932)=1-0=1

6-8.2
0.2143

c) P(X <6)=P(Z< Y= P(Z<-1027)=0
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7-43.

7-44.

7-45.

PETEER S S S AR
#y =175 Uy =170 o2 52
o =8 o, =12 =Nty =ty —+—5)
1 2
8% 122

~N(15-70,—+—
( 16 9 )

~ N(5,20)

a) P(X,— X, >4)
P(Z > %) = P(Z >-0.2236) = 1 - P(Z < -0.2236)

=1-0.4115=0.5885

b) PG5< X, - X, <5.5)
P(% <Z< %‘05) =P(Z <0.1118)— P(Z £-0.3354)

=0.5445-0.3687 =0.1759

2 2

= = o
If g =p,,then X, — X, is approximately normal with mean O and variance 2—§+2—’; =2048.

Then, P(X , — X , >3.5)= P(Z > S20) = P(Z >0.773) = 0.2196

The probability that YB exceeds X A by 3.5 or more is not that unusual when u, and p, are equal.

Therefore, there is not strong evidence that u, is greater than 4, .

Assume approximate normal distributions.
= = 2 2
(X pigh = X1ow) ~ N(60 55,3+
~NG5,2)
P(X i — Xy 22) = P(Z > 22)=1-P(Z<-2.12)=1-00170=0.983

Supplemental Exercises

7-46.

7-417.

7-48.

7-49.

f(xl,xz,X3,x4,x5) =——¢ 20

n
F(x,xy0x,) = Hﬂe_ﬂ‘x’ for x;,>0,x,>0,.,x, >0
i=1

f(xy,xy,x5,x4)=1  for 0<x, £1,0<x,<10<x;<10<x, <1

2 2
X, -X, ~ N(lOO—lOS,% +%)

~ N(-5,0.2233)
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7-50.

7-51.

7-52.

7-53.

7-54.

7-55.

7-56.

7-57.

05z, =¥0.2233 =0.4726

X ~ N(50.,144)

12/436 — 7 T 127436
=P(-1.5<57Z<1.)5)

P(47< X <53) = P(M <7< 0 j

=P(Z<15)-P(Z<-1)5)

=0.9332-0.0668 = 0.8664

No, because Central Limit Theorem states that with large samples (n = 30), X is approximately normally
distributed.

Assume X is approximately normally distributed.

X —1-P(X < _ | _ P(7 < 4985-5500
P(X >4985) =1 P(X < 4985) =1- P(Z < =X

=1-P(Z<-1545)=1-0=1

_X-u_ 52-50

= =
siAn 2116

ts15 =1.753. Since 5.33 >> ¢ 5 , the results are very unusual.

=5.6569

P(X £37)=P(Z<-536)=0
Binomial with p equal to the proportion of defective chips and n = 100.

E@X, +(-a)X, =au+(1-a)u=pu
V(X)=V[aX, +(1-a)X,]
=a’V(X)+(1-a)V(X,)
=a’ (&) +(1-2a+a")(E)

2.2
a‘o 2 2 2.2
_ Lo _2aco Lao
n n ny m

2
= (n,a® +n, = 2ma + nja*)(-2—)
mhy

X 2
NX) _ (L) (2nya —2n, +2ma) =0
da mn,
0=2n,a—-2n,+2na
2a(n, +ny) =2n
a(n, +n)) =n

n

a=
n2+nl
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7-58
—x

Y—tn
L(9)=[ IJ &0
26 i=1
1 n nox
InL(@) = nln 3 +2> Inx; - >+
26 i-1 i-10

dlnL(6) _ -3n N ii
00 o i=102

Making the last equation equal to zero and solving for theta, we obtain:

as the maximum likelihood estimate.

7-59

b 61
L) =0"]x;
i=1

InL(@)=nlnb+ (6 - l)iln(x,-)
i=1

olnL@) n I
Y Sy
50 9+,§1 n(x;)

making the last equation equal to zero and solving for theta, we obtain the maximum likelihood estimate.

—-n

iln(xi)
i=1

é:
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7-60
1-0

@ =11
L =—1I11lx 0
0" izl |

1-6 2
InL(6) =-nlné +T > In(x;)
i=1

dln L(6) n 12
= Sn(x
S0 "8 g X

making the last equation equal to zero and solving for the parameter of interest, we obtain the maximum
likelihood estimate.

o= —lfln(x,.)
n;

=1

2129:”_0:9
ni
Lok ¥
E(hl(Xl.)) = j(ln x)x ? dx let u=Inx and dv=x ¢ dx
0
1 1-6

then, E(In(X)) = —HJ.x ¢ dx=-6

0
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Mind-Expanding Exercises

7-61. p(xlz(),xzzo):w
N(N-1)
M(N-M)
P(X,=0,X, =)=
=0 =D=0 )
(N-M)M
P(X,=1,X,=0)=———>—
K =b e =0= 0T
X, =1, =1y = N =MN-M -
N(N -1y

P(X,=0)=M/N

N N-M
PX, =1 =5
P(X,=0)=P(X,=01X,=0)P(X, =0)+P(X, =01 X, =D)P(X, =1)
M-1. M M N-M M
= X— + X =—
N-1"N N-1" N N
P(X,=1)=P(X,=11X,=0)P(X, =0)+ P(X, =11 X, = )P(X, =1)
N-M M N-M-1_N-M N-M
= X— + X =
N-1"N N-1 N N

1. M .
Because P(X, =01X,=0)= % is not equal to P(X, =0) :W , X, and X, are not independent.

7-62 a)

_ T-n/2]
T(n/2)\2/(n—1)

n

b.) When n =10, ¢, = 1.0281. When n = 25, ¢, = 1.0105. So S is a pretty good estimator for the standard
deviation even when relatively small sample sizes are used.
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7-63  (a) Z,=Y,—X,; s0 Z, is N(0, 207). Let 0** =20, The likelihood function is

L(z,-z)

L 1 - 2
L) =] | ——=¢ ¥
( HO‘*\/Z%’

1 n )
1 T2 z %
i=1

20°

= (0.*2 27Z.)n/2 €

n I 3
The log-likelihood is In[L(0*")] = ~= 276+ ) ~—— > 2/

2 20% ‘3
Finding the maximum likelihood estimator:

dIn[L(c*)] n 1 &,
= >t 2.4 =0
do* 20% 20% ‘S

n
2 2
no* = E Z;
i=1

fg2 LN 2:ln Y
&% _ngzi an::‘(yi X;)

But 6% =202, so the MLE is

A 1Y
267 ==> (v, —x)’
n o

1 n
6’ = E (yi _xi)2
2n'5

b)
E<6'2>=EFZ<K—XJZ}
2n3
1L )
=—> E¥,-X)
2n3
=iZE(Yi2 —2Y X, +X/)
2n 5
= L S [E) - EQYX,)+ E(XD)]
2n 5
=LZ[62—0+62]
2n3
B 2no’
2n

2
=0
So the estimator is unbiased.
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7-64. P[I X - y7a> %) < iz from Chebyshev's inequality.
n c

Then, P[I X - HI< %) 2 l—i2 . Given an €, n and ¢ can be chosen sufficiently large that the last probability
n c

isnear 1 and <9 isequal to €.
n

765 P(x,, <i)=P(x, <t for i=1,..n)=[F()
P(xy, >1)=P(X, >t for i=1,..n)=[- FE)
Then, P(X,, <t)=1-[1-F())"
9
a
Fry =2 Py, )= Q)1 ()

Frg 0)==-Fy, ()= nll=F@e)""'f ()

766 P(X) =0)=Fy, (0)=1-[1-F(0)]"=1- p" because F(0)=1 - .

P, =1)=1-Fy (0)=1-[FO)"=1-(1-p)"

7-67.  P(X <t)=F(r)= ¢g]. From Exercise 7-65,

Fa, O =nfi- ] .

2ro

G m
~nfefe]f”
fx(n)

2ro

7-68. P(X < f) =1—e~* . From Exercise 7-65,
FX(I) (t)zl_e_w fX(l) (t) = n/?e_“’
Fy,, [()=l1-e]" Fao, () =nll=e #1727
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760.  P(F(x,,)<t)=P(X,, < F'(t))=1" from Exercise 7-65 for 0 <t<1.

1
If Y =F(X),then f,(y)= ny"",0< y<1.Then, E(Y)= jny"dy :Ll
0 n+

P(F(X(l))> [): P(X(l) < F_l(t))ZI—(l—t)" from Exercise 7-65 for 0 <t<1.
If Y = F(X), then fy(y)=n(l-1""0< y<1.

1
1 . . .
Then, E(Y) = j yn(l— y)"fldy = Y where integration by parts is used. Therefore,
0 n+

1
E[F(X )] = "1 and E[F(X )] = —

n+ n+l1

7-70. E(WV)= k"f [E(X2)+EXH)-2E(X, X))

i=1
n—1

=kY, (C*+u*+o°+u’-2u°
; ( a # ) Therefore, k = !

2(n-1)
=k(n-1)20"

7-71 a.)The traditional estimate of the standard deviation, S, is 3.26. The mean of the sample is 13.43 so the
values of ‘Xi - X‘ corresponding to the given observations are 3.43, 1.43,4.43, 0.57, 4.57, 1.57 and 2.57.

The median of these new quantities is 2.57 so the new estimate of the standard deviation is 3.81; slightly
larger than the value obtained with the traditional estimator.

b.) Making the first observation in the original sample equal to 50 produces the following results. The
traditional estimator, S, is equal to 13.91. The new estimator remains unchanged.

772 a)
T.= X, +
X +X,-X,+

X, +X, =X+ X5- X, +
ot
X, +X, - X, + X=X, 4.+ X, - X, | +

m=-NX+X, - X+ X;-X,+.+X,-X,_)

. .. e . 1
Because X is the minimum lifetime of n items, E(X,) = 7 .
n
Then, X, — X is the minimum lifetime of (n-1) items from the memoryless property of the exponential and
1
EX,-X)=——.
K= X) =502

— L The
(n—-k+DA

ET)=""2+ nol oot :i:,u
nd (n-DA (n-r+DA A r A

Similarly, E(X, - X,_,) =

n,

b) VT, /r)= 1/(A*r) is related to the variance of the Erlang distribution

V(X)=rlA. They are related by the value (1/7%) . The censored variance is (1/%) times the uncensored
variance.
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Section 7.3.3 on CD

(o’ Imu, +o.x
S7-1 From Example S7-2 the posterior distribution for [ is normal with mean ; 3 / and
o,:0°/n

, o’ (6’ In)
variance #
o,-0°/n

The Bayes estimator for W goes to the MLE as n increases. This follows since 0 /n
e

(the O'g ’s cancel). Thus, in the limit /2 = X .

goes to 0, and the estimator approaches

_(X*.u)z

1 > 1
S7-2 a) Because f(x|u)= mo_ e * and f(u)= p

for a < M < b, the joint distribution

2
1 _ G-
is f(x,,u)z—e 20% for -0 < x <o and a<p<b. Then,

(b-aW2ro

s /4)2

f)=

d,u and this integral is recognized as a normal probability. Therefore,

b- a'[\/_o'
f(X)=E[<I>(’%;X)—<I>(“;"

) where ®(x) is the standard normal cumulative distribution function.

_ SO _ ;o
Then, f (| x
T =5 ™ Torolelz)-a(=)
ﬂe_uz—:z) du

b) The Bayes estimator is ,ZZ = j

. V27ol@(’)- @l

Let v = (x - w). Then, dv = - du and

t2

I’ (x—v)e > dv

yN2mol@(7) - o)

fol)-al) ;e

o= ey

Vv
—r.2 —
Letw= 5 - Then, dw = ﬁ]dv = [j]dv and

)
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. mAl L, —(mHD)
e’A A 0
S7-3. a) f(x) = forx=0, 1, 2, and f(ﬂ) =| M +1 for A > 0. Then,
x! A, T(m+1)
(1 2
fx,A)= —
Ay T(m+1)x!
This last density is recognized to be a gamma density as a function of A. Therefore, the posterior
distribution of A is a gamma distribution with parameters m + x + 1 and 1 + m}f 1
0

S7-4

S7-5.

S7-6.

b) The mean of the posterior distribution can be obtained from the results for the gamma distribution to be
m+ x+1 ~2, m+x+1
[1+’L“ m+ A, +1
A

~

a) From Example S7-2, the Bayes estimate is {{ =

2 (4)+1(4.85)

9

25

=4.625

b.) ,[1 = X =4.85 The Bayes estimate appears to underestimate the mean.

0.01)(5.03) + (£ )(5.05
a) From Example S7-2, ﬁ = ( )( ) (25 )( )
0.01+

b.) ,[1 =X =5.05 The Bayes estimate is very close to the MLE of the mean.

=5.046

a f(xlA) =A™, x>0 and f(1)=0.0le "*'* Then,

f(x,x,,A)= e M1t (0 01700 = 0,012 A2 Aq 4 function of A, this is
recognized as a gamma density with parameters 3 and X{ + Xo + 0.01. Therefore, the posterior mean for A is

3 3

A= =— =0.00133.
x+x,+0.01 2x+0.01
1000
b) Using the Bayes estimate for A, P(X<1000)= j().00133e_'00133xdx =0.736.
0
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