CHAPTER 21: SUPPLEMENTARY SOLUTIONS ATOMIC SPECTROSCOPY

S21-1. The Doppler linewidth is given by $\Delta \lambda = \lambda (7 \times 10^{-7}) \sqrt{T/M}$ = 0.001₃ nm for Fe at 3 000 K (with $\lambda = 248$ nm and M = 56) = 0.001₈ nm for Fe at 6 000 K (with $\lambda = 248$ nm and M = 56) = 0.000 7 nm for Hg at 3 000 K (with $\lambda = 254$ nm and M = 201) = 0.001₀ nm for Hg at 6 000 K (with $\lambda = 254$ nm and M = 201) **S21-2.** (a) $\Delta E = hv = \frac{hc}{\lambda} = \frac{(6.6261 \times 10^{-34} \text{ J} \cdot \text{s})(2.9979 \times 10^8 \text{ m/s})}{327 \times 10^{-9} \text{ m}}$

= 6.07×10^{-19} J/molecule = 366 kJ/mol

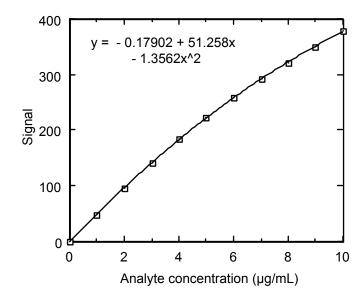
(b)
$$\frac{N^*}{N_0} = \frac{g^*}{g_0} e^{-\Delta E/kT} = 3e^{-(6.07 \times 10^{-19} \text{ J})/(1.381 \times 10^{-23} \text{ J/K})(2400 \text{ K})} = 3.29 \times 10^{-8}$$

(c) At 2415 K, $N^*/N_0 = 3.69 \times 10^{-8} \implies 12\%$ increase from 2400 to 2415 K

(d) At 6000 K,
$$N^*/N_0 = 0.0020$$

S21-3. Sensitivity = concentration of Mo giving A = 0.00436 (= 99% T)

$$\frac{[\text{Mo] giving } A = 0.004 \ 36}{[\text{Mo] giving } A = 0.025} = \frac{0.004 \ 36}{0.025}$$
$$\frac{x}{23.6 \ \mu\text{g/mL}} = \frac{0.004 \ 36}{0.025} \implies x = 4.1 \ \mu\text{g/mL}$$


S21-4. (a)
$$\mu g/mL$$
 $A_{422.7}/A_{324.7}$
1.00 0.6056
2.00 0.6062 average = 0.6019
3.00 0.5913
4.00 0.6045

(b) Standard mixture has equal concentrations of Ca and Cu:

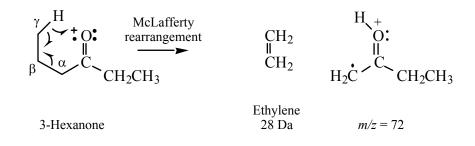
$$\frac{A_{\text{Ca}}}{[\text{Ca}]} = F\left(\frac{A_{\text{Cu}}}{[\text{Cu}]}\right) \implies \frac{0.6019}{[\text{Ca}]} = F\left(\frac{1.000}{[\text{Cu}]}\right) \implies F = 0.6019$$

Unknown mixture:

$$\frac{A_{\text{Ca}}}{[\text{Ca}]} = F\left(\frac{A_{\text{Cu}}}{[\text{Cu}]}\right) \implies \frac{0.218}{[\text{Ca}]} = 0.6019\left(\frac{0.269}{[2.47 \,\mu\text{g/mL}]}\right) \implies [\text{Ca}] = 3.33 \,\mu\text{g/mL}$$

S21-5. (a) The graph below shows the quadratic fit to the calibration data.

- (b) $344.0 = -0.17902 + 51.258x 1.3562x^2 \implies x = 8.73 \ \mu\text{g/mL}$ (by solving quadratic equation and using the root that lies on this graph) $346.2 = -0.17902 + 51.258x - 1.3562x^2 \implies x = 8.81 \ \mu\text{g/mL}$ $341.8 = -0.17902 + 51.258x - 1.3562x^2 \implies x = 8.65 \ \mu\text{g/mL}$ Concentration of unknown = $8.73 \pm 0.08 \ \mu\text{g/mL}$
- **S21-6.** Emission is observed only if the narrow laser excitation frequency overlaps the even narrower atomic absorption line. The laser bandwidth is narrow enough to excite Mn without exciting Ga.


CHAPTER 22: SUPPLEMENTARY SOLUTIONS MASS SPECTROMETRY

S22-1. (a) The peak at m/z 71 is C₄H₇O⁺. Its contribution to m/z 72 should be

Intensity = $4 \times 1.08\% + 7 \times 0.012\% + 1 \times 0.038\% = 4.4\%$ of *m/z* 71 $1^{3}C$ ^{2}H ^{17}O

The observed intensity of 4.9% in spectrum (*a*) is reasonable, but the 10.7% intensity in spectrum (*b*) is too great. There is probably another contribution to the m/z 72 peak in spectrum (*b*).

(b) The extra intensity in the peak at m/z 72 in represents loss of a neutral molecule with a mass of 28 Da from the molecular ion. The McLafferty rearrangement can split C₂H₄ from 3-hexanone, but not from 2-methyl-3-pentanone, which lacks a γ-CH group.

S22-2. ¹²C abundance + a = 0.989 3 ¹³C abundance + b = 0.010 7 Abundance of ¹²C₃H₆ = a^3 = 0.968 2 Abundance of ¹²C₂¹³CH₆ = $3a^2b = 0.031$ 4₂ Abundance of ¹²C¹³C₂H₆ = $3ab^2 = 0.000$ 339₈ Abundance of ¹³C₃H₆ = $b^3 = 0.000$ 001 22₅ Relative abundances: M⁺: M⁺1 : M⁺2 : M⁺3 = 1 : 0.032 4 : 0.000 351 : 0.000 001 27

S22-3. (a) Relative abundances of isotopic labels are obtained by subtracting the natural abundance column of the table from the experimental abundance column:

144
Nd = 160.53 - 87.97 = 72.56 148 Nd = 38.73 150 Nd = 59.37

The relative number of atoms of each isotope reaching the detector are

 144 Nd : 148 Nd : 150 Nd = 72.56 : 38.73 : 59.37

The 1.00-g dust sample contained 0.100 μ g of ¹⁴⁴Nd, which is 6.949 × 10⁻¹⁰ mol with an atomic mass of 143.909 9 = 4.18₅ × 10¹⁴ atoms of ¹⁴⁴Nd. Therefore the number of atoms of ¹⁴⁸Nd is (38.73/72.56)(4.18₅ × 10¹⁴) = 2.23₄ × 10¹⁴ atoms. The number of atoms of ¹⁵⁰Nd is (59.37/72.56)(4.18₅ × 10¹⁴) = 3.42₄ × 10¹⁴ atoms. Converting each number of

atoms to the number of moles and multiplying by the atomic mass of that isotope tells us that the masses are $0.054 8_7 \mu g$ of ¹⁴⁸Nd and $0.085 2_4 \mu g$ of ¹⁵⁰Nd.

(b) We know that ash emerging from smokestack A contained 10.2 ppm (10.2 μg/g) of ¹⁴⁸Nd and ash from smokestack B had 11.4 ppm of ¹⁵⁰Nd. The experimental 1.00-g sample contained 0.054 8₇ μg of ¹⁴⁸Nd. To find the mass of ash from smokestack A in the 1.00-g sample, we can write

$$\frac{0.054 \, 8_7 \, \mu \text{g of }^{148} \text{Nd}}{x \, \text{g ash}} = \frac{10.2 \, \mu \text{g of }^{148} \text{Nd}}{1 \, \text{g ash}} \implies x = 5.38 \text{ mg ash from stack A}$$

For smokestack B, we can say

$$\frac{0.08524 \,\mu\text{g of } ^{150}\text{Nd}}{x \,\text{g ash}} = \frac{11.4 \,\mu\text{g of } ^{150}\text{Nd}}{1 \,\text{g ash}} \implies x = 7.48 \text{ mg ash from stack B}$$

(c) The first step separates lanthanide ions from other cations in the digested dust sample. It does not separate the lanthanides from one another. The second separation, done under milder conditions on the same ion-exchange resin, separates individual lanthanides from each other. In the second separation, elution is conducted with a much weaker acid (0.225 M 2-methyl lactic acid versus 6 M HCl in the first separation), so a finer separation of similar cations can occur. It is also possible that 2-methyl lactic acid coordinates to lanthanide ions to form complexes such as Ln(2-methyl lactate)₃ and that the different stability constants of the complexes lead to different elution characteristics.

CHAPTER 23: SUPPLEMENTARY SOLUTIONS INTRODUCTION TO ANALYTICAL SEPARATIONS

S23-1. (a) Fraction remaining
$$= \frac{V_1}{V_1 + KV_2}$$

 $0.005 = \frac{100}{100 + (610)V_2} \Rightarrow V_2 = 32.6 \text{ mL}$
(b) $0.005 = \left(\frac{100}{100 + (610)V_2}\right)^4 \Rightarrow V_2 = 0.453 \text{ mL}.$ $4 \times V_2 = 1.81 \text{ mL}$
S23-2. (a) $D + \frac{[\text{HA}]\text{ether} + [\text{A}^-]\text{ether}}{[\text{HA}]\text{aq} + [\text{A}^-]\text{aq}} \approx \frac{[\text{HA}]\text{ether}}{[\text{HA}]\text{aq} + [\text{A}^-]\text{aq}}$
 $K + \frac{[\text{HA}]\text{ether}}{[\text{HA}]\text{aq}}$
(b) $D = \frac{K - [\text{H}^+]}{[\text{H}^+] + K_a} = \frac{92 - 10^{-4.00}}{10^{-4.00} + 4.2 \times 10^{-4}} = 17.7$
(c) At pH 3.50, more of the acid will be in the form HA, which is the extractable species. Therefore the distribution coefficient will be greater than at pH 4.00.
(d) $1 = \frac{92 \cdot [\text{H}^+]}{[\text{H}^+] + 4.2 \times 10^{-4}} \Rightarrow [\text{H}^+] = 4.62 \times 10^{-6} \text{ M} \Rightarrow \text{pH} = 5.34$
S23-3. (a) $t_r = 13.81 - 1.06 = 12.75 \text{ min. } k' = 12.75/1.06 = 12.03$
(b) $w_{1/2} = 0.172 \text{ min } \Rightarrow N = \frac{5.55 t_1^2}{w_{1/2}^2} = \frac{5.55 (13.81)^2}{0.172^2} = 3.58 \times 10^4 \text{ plates}$
(c) $w = 0.302 \text{ min } \Rightarrow N = \frac{16 t_r^2}{w^2} = \frac{16 (13.81)^2}{0.302^2} = 3.35 \times 10^4 \text{ plates}$
(d) $H = (30.0 \times 10^3 \text{ mm})/(3.35 \times 10^4 \text{ plates}) = 0.896 \text{ mm}$
(c) Volume of 30.0 m of column = $\pi v^2 \times \text{length} = \pi (0.0262 \text{ cm})^2 \times 3000 \text{ cm} = 6.47 \text{ mL}.$
Volume flow rate = $(6.47 \text{ mL})/(1.06 \text{ min}) = 6.10 \text{ mL/min}$

S23-4. (a)
$$N = \frac{16 t_r^2}{w^2} = \frac{16 (12.83 \text{ min})^2}{(0.307 \text{ min})^2} = 2.80 \times 10^4 \text{ plates}$$

(b) $H = (158 \text{ mm})/(2.80 \times 10^4 \text{ plates}) = 5.64 \,\mu\text{m}$

S23-5. (a) Volume of mobile phase per cm of column = $(0.426)\pi r^2 \times (1 \text{ cm}) = (0.426)\pi (0.960 \text{ cm})^2 \times (1 \text{ cm}) = 1.23 \text{ mL}$ Linear flow rate = (2.22 mL/min) / (1.23 mL/cm) = 1.80 cm/min

(b)
$$t_{\rm m} = (50.6 \text{ cm}) / 1.80 \text{ cm/min}) = 28.1_1 \text{ min}$$

 $k' = \frac{t_{\rm r} - t_{\rm m}}{t_{\rm m}} \implies 8.04 = \frac{t_{\rm r} - 28.11}{28.11} \implies t_{\rm r} = 254 \text{ min}$

S23-6.
$$\alpha = (k_2') / (k_1') = 1.02; \quad k_2' = 5.10; \quad k_{av}' = 5.05$$

Resolution =
$$\frac{\sqrt{N}}{4} \left(\frac{\alpha - 1}{\alpha}\right) \left(\frac{k'_2}{1 + k'_{av}}\right)$$

 $1.00 = \frac{\sqrt{N}}{4} \left(\frac{1.02 - 1}{1.02}\right) \left(\frac{5.10}{1 + 5.05}\right) \implies N = 5.86 \times 10^4 \text{ plates}$

 $(5.86 \times 10^4 \text{ plates})(155 \ \mu\text{m/ plate}) = 9.08 \ \text{m}$

To double the resolution requires four times as many plates = 36.3 m.

S23-7. (a) Heptane:
$$t'_r = 14.56 - 1.06 = 13.50 \text{ min.}$$
 $k' = 13.50/1.06 = 12.74$
 $C_6H_4F_2$: $t'_r = 14.77 - 1.06 = 13.71 \text{ min.}$ $k' = 13.71/1.06 = 12.93$

(b)
$$\alpha = 12.93/12.74 = 1.015$$

(c)
$$w_{1/2}$$
 (heptane) = 0.126 min; $w_{1/2}$ (C₆H₄F₂) = 0.119 min

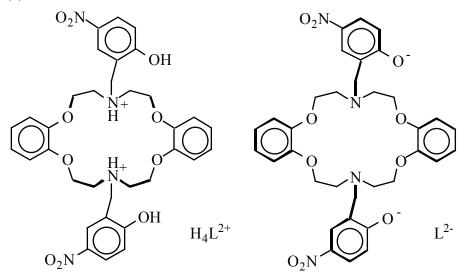
$$N = \frac{5.55 t_{\rm r}^2}{w_{1/2}^2} = \frac{5.55 (14.56)^2}{0.126^2} = 7.41 \times 10^4 \text{ plates for heptane}$$
$$N = \frac{5.55 (14.77)^2}{0.119^2} = 8.55 \times 10^4 \text{ plates for C}_6\text{H}_4\text{F}_2$$

(d) w (heptane) = 0.216 min; w (C₆H₄F₂) = 0.196 min

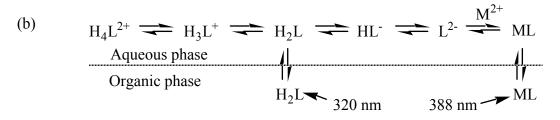
$$N = \frac{16 t_{\rm r}^2}{w^2} = \frac{16 (14.56)^2}{0.216^2} = 7.27 \times 10^4 \text{ plates for heptane}$$
$$N = \frac{16 (14.77)^2}{0.196^2} = 9.09 \times 10^4 \text{ plates for C}_6\text{H}_4\text{F}_2$$

(e) Resolution =
$$\frac{\Delta t_{\rm r}}{w_{\rm av}} = \frac{14.77 - 14.56}{0.206} = 1.019$$

(f)
$$N = \sqrt{(7.27 \times 10^4)(9.09 \times 10^4)} = 8.13 \times 10^4$$
 plates


Resolution =
$$\frac{\sqrt{N}}{4} \left(\frac{\alpha - 1}{\alpha}\right) \left(\frac{k'_2}{1 + k'_{av}}\right) = \frac{\sqrt{8.13 \times 10^4}}{4} \left(\frac{1.015 - 1}{1.015}\right) \left(\frac{12.93}{1 + 12.84}\right) = 0.984$$

(g) Fraction of time in stationary phase = $\frac{t_s}{t_s + t_m} = \frac{k't_m}{k't_m + t_m} = \frac{k'}{k' + 1}$
= $\frac{12.74}{12.74 + 1} = 0.927$


S23-8.
$$\frac{\text{Large load}}{\text{Small load}} = \left(\frac{\text{large column radius}}{\text{small column radius}}\right)^2$$
$$\frac{72.4 \text{ mg}}{10.0 \text{ mg}} = \left(\frac{3.00 \text{ cm}}{\text{small column diameter}}\right)^2 \Rightarrow \text{diameter} = 1.11 \text{ cm}$$
$$\text{Use the same concentration} \Rightarrow \text{volume} = \frac{10.0}{72.4} (0.500 \text{ mL}) = 0.0691 \text{ mL}$$

S23-9. Flux
$$= -D \frac{dc}{dx} = -\left(2.0 \times 10^{-9} \frac{\text{m}^2}{\text{s}}\right) \left(-3.4 \frac{\text{mol}}{\text{L} \cdot \text{cm}}\right)$$

 $= \left(2.0 \times 10^{-9} \frac{\text{m}^2}{\text{s}}\right) \left(\frac{100 \text{ cm}}{\text{m}}\right)^2 \left(3.4 \frac{\text{mol}}{\text{L} \cdot \text{cm}}\right) \left(\frac{0.001 \text{ L}}{\text{cm}^3}\right) = 6.80 \times 10^{-8} \frac{\text{mol/s}}{\text{cm}^2}$
 $= 4.09 \times 10^{16} \frac{\text{ions/s}}{\text{cm}^2}$

In 5.5 s, 2.3×10^{17} ions will cross each square centimeter.

S23-10. (a)

The organic phase initially contains H_2L , which gives the peak near 320 nm. Hg(II) extracted from the aqueous phase into the organic phase gives ML, whose absorbance maximum is at 388 nm. By raising the pH of the aqueous phase, the equilibria above are driven to the right and formation of ML is favored. (At low pH, H⁺ competes with Hg(II) for the ligand.) An isosbestic point is observed when there are only two predominant species and they have a constant total concentration. The isosbestic point suggests that H₂L and ML are the only significant species in the organic phase and, therefore, that very little of the crown ether goes into the aqueous phase at any pH. If the crown ether dissolved in the aqueous phase, its concentration in the organic phase would change and there would not be an isosbestic point.

CHAPTER 24: SUPPLEMENTARY SOLUTIONS GAS CHROMATOGRAPHY

S24-1.
$$I = 100 \left[6 + (7-6) \frac{\log(6.45) - \log(6.12)}{\log(7.20) - \log(6.12)} \right] = 632$$

S24-2. (a) hexane < benzene < heptane < nitropropane < pyridine < octane < nonane
(b) hexane < heptane < benzene < octane < pyridine < nitropropane < nonane
(c) hexane < heptane < octane < nonane < benzene < pyridine < nitropropane

S24-3. $TZ = \frac{18.5 - 14.3}{0.5 + 0.5} - 1 = 3.2$