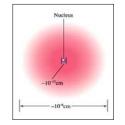
2.5 The modern view of atomic structure

what is an atom?

- The basic unit of an element
- Combines with other atoms to form: molecules
- Atoms keep their identity during chemical reaction

What atoms consist of?

Nucleus: Protons: (+ve) particles, determine identity of an element.


Neutrons: non-charged particles

Electrons: (-ve) particles and around the nucleus (10⁻⁸ cm diameter)

Particles	Mass	Charge
Electron	9.11 x 10 ⁻³¹ kg	(- 1.60 x 10 ⁻¹⁹ C)
Proton	1.67 x 10 ⁻²⁷ kg	(+ 1.60 x 10 ⁻¹⁹ C)
Neutron	1.67 x 10 ⁻²⁷ kg	None

Nucleus: very small

Highly dense

Electrons: Cover most atomic volume

Electrons determine the chemical behavior of an element.

-e > p	•••••	-ve atom
-e < p	•••••	+ve atom
-e = p	•••••	Neutral atom

Page 1 of 7

Chapter 2

Atomic symbol

To represent an atom:

${}_{Z}^{A}X$

A: mass number (total number of protons and neutrons)

Z: atomic number (number of protons)

A - Z = number of neutrons

Example:

	$^{39}_{19}$ K	$^{23}_{11}$ Na	$^{24}_{11}$ Na
Protons	19	11	11
Neutrons	20	12	13
Electrons	19	11	11

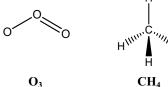
Isotopes

- ✓ Atoms with the same number of protons and different number of neutrons
- ✓ Isotopes show identical chemical properties

	$^{14}_{7}$ N	$^{15}_{7}$ N ³⁻
Protons	7	7
Neutrons	7	8
Electrons	7	10
	Neutral atom	Negative atom (-3)

Negative ions have larger size than the neutral atom e.g $C\Gamma > CI$. Positive ions have smaller size than the neutral atom e.g $Na > Na^+$.

Chapter 2


Chapter 2

2.6 Molecules and ions

- Atoms combine to form molecules by chemical bonds
- Sharing electrons between two atoms makes a covalent bond
- Covalent molecules such as: H₂, CO₂, H₂O.

Structural formula:

Chemical formula:

Ions:

• An atom or a group of atoms that has a net positive or negative charge

Lose $-e \rightarrow$ + ve charge \rightarrow cation. e.g. Mg²⁺, Na²⁺

Gain $-e \rightarrow$ - ve charge \rightarrow anion. e.g. Cl⁻, NO₃⁻

• A compound of anions and cations is called: Inoic compound

 $Na^+ + C\Gamma \rightarrow NaCl$

- Transfer of electrons between two atoms makes an ionic bond
- Ionic bond: force of attraction between oppositely charged ions.
- Ionic compounds such as: NaCl, MgF₂.
- Ions can be:
 - a. Monatomic, such as Na⁺, Cl⁻...
 - b. Diatomic, such as OH⁻, O₂²⁻...
 - c. Polyatomic, such as NH₄⁺, NO₃⁻...

2.7 Periodic table

- Way of arranging elements so that those with similar properties are grouped together.
- Elements counted by their atomic number
- Rows are called Periods
- Columns are called Family or Group.
- Most elements are metals (left side of table)
- Physical properties conduct, malleable, ductile and often lustrous
- Form positive ions
- Non-metals (upper right side of table)
 Form negative ions with metals to form <u>ionic</u> compounds.
 Bond to other non-metals to form <u>covalent</u> molecules.

Groups of periodic table

Groups (columns) – elements with similar properties Group 1 or 1A – Alkali metals – very reactive, form (+1) ions Group 2 or 2A – Alkaline earth metals – form (+2) ions Group 17 or 7A– Halogens – form (–1) ions and diatomic molecules Group 18 or 8A – Noble gases – monatomic gases-little chemical activity

Groups 3 to 12 – Transition metals –form many oxidation states

Page 3 of 7

Page 4 of 7

Chapter 2

2.8 Naming Simple Compounds

Type I: Binary ionic (MX – metal and non-metal)

- Name cation first, then anion
- Monatomic cation, name of element.

 $Ca^{2+} = calcium$

• Monatomic anion, root + *ide*

 $Cl^- = chloride$

d. E.g. $CaCl_2 = Calcium chloride$.

(Table 2.3)

Name:

NaBr	Ag ₃ N
Mg_3P_2	LiH
CaO	Al ₂ O ₃

Type II: Binary ionic compounds (with transition metals)

• Metals that form more than one cation such as the transition metals

• Use Roman numerals (I, II, III, IV...)

CoCl₂ = Cobalt(II) chloride.

(Table 2.4)

Name:

Fe ₂ O ₃	SnO ₂
FeO	PbBr ₂
Hg ₂ O	CuS

Page 5 of 7

Ionic compounds with polyatomic ions

Have special names and MUST be memorized.

(Table 2.5)

• E.g. $(NH_4)_2CO_3$ = ammonium carbonate

Name:

$Mg(H_2PO_4)$
MgHPO ₄
CaO ₂
Cu(CO₃) ₂

Type III: Binary Covalent Compounds (two non-metals)

- First element in formula names first
- Second element named as anion
- Use prefixes to donate number present
- Never use mono on first element
- Drop a/o of prefix when element begins with vowel

E.g. P_2O_5 = diphosphorous pentaoxide

(Table 2.6)

Mono = 1, di = 2, tri = 3, tera = 4, penta = 5, hexa = 6etc.

Name:

N_2O_4	PBr ₅
СО	N ₂ O

Page 6 of 7

Chapter 2

Chapter 2

Hydrogen (H)

✓ Forms two ions:

<u>Cation: H^+</u>	Anion: H
e.g polyatomic anions:	e.g. ionic compounds containing
CO ₃ ²⁻ , HCO ₃ ⁻	hydrogen and Group 1 or 2 metals
LiHCO ₃	KH, BaH ₂

 Forms binary covalent compounds with non-metals, only one compound with each non-metal (except Carbon); e.g. H₂O, NH₃, H₂S, HCl and HF.

<u>Acids</u>

- Compounds which give H⁺ when dissolved in water
- Recognized by a (H) that appears *first* in the formula

Naming acids:

✓ Anion *does not* contain Oxygen:

- ✓ Formula must contain (aq) aqueous or dissolved in water
 - Name starts with *hydro* and ends with *ic*.

HCl = hydrogen monochloride HCl_(aq) = hydrochloric acid

- ✓ Anion contains Oxygen:
 - If anion name ends with *ate*, acid name ends with *ic*.
 - If anion name ends with *ite*, acid name ends with *ous*.
 - e.g. H_2SO_4 (root is sulfate) \rightarrow sulfuric acid
 - H_2SO_3 (root is sulfite) \rightarrow sulfurous acid

Page 7 of 7