Name: Majid Sultan Said Al-Resi ID No: 2006-299-393

SFDV3002 Tutorial 2:
The Relational Model and Boolean Logic

 Questions

1- What is meant by the term data independence?

Data independence relates to processing and refers to miscellaneous data used in programs that might change in the future, such as discount rates, product descriptions and error messages. Such data should be stored in a database and not "hard wired" into the code of the program
2- What are the possible implications of a lack of data independence?

1- data-dependent approach is very inflexible because it makes it difficult to modify the data
 2- Makes the data inaccessible to other programs.

3- Data independence describes the separation of the interaction with data from the internal representation of the data. It means that users of a system can operate at a higher level of abstraction than the internal processing of the system itself. Data independence gives rise to various layers of abstraction within a system, which correspond to the different views of the data held by different parts of the information system.

Date’s definition of data independence is “immunity of applications to change in storage structures and access strategy” (this is obviously referring to physical data independence).

The ANSI/SPARC “three-schema” architecture specifies three such levels of abstraction: the internal or physical level, the logical level and the external or conceptual level. (Unfortunately the original specification of this architecture uses the term “conceptual level” to refer to what we call in SFDV3002 the “logical level”, but the basic concepts are the same.)

Physical data independence refers to the abstraction of the way in which data are physically represented. That is, users and application programs do not need to know the physical location or structure of data in order to perform useful operations such as queries. This is analogous to going into a shop and asking an assistant to find something for you. You do not need to know the physical location of the item, you simply ask for the item you want and it is retrieved for you. High-level query languages such as SQL are good illustrations of data independence. The term “data independence” is often used to refer specifically to physical data independence.

Logical data independence refers to the abstraction of the way in which data are logically represented. That is, end users do not need to know the logical structure of the database schema; they only see the higher-level conceptual entities that have been defined for them.

Without physical data independence, application programs are tightly coupled to the physical data structures in the database. If the data structures change (e.g., an index is added or removed), application programs will also need to be changed accordingly. Lack of data independence also means that queries will likely be more imperative (procedural) in nature and also more complex, because they must operative at a lower level: there is no high-level interface to hide the storage details. Finally, automatic optimisation of queries is difficult, because queries tend to be coded in an explicit, imperative manner, within application programs—there is not separate query processing software such as a DBMS. Any optimisation must therefore be done manually on a case-by-case basis.

One of the specific aims of Codd’s design of the relational model was to provide data independence.

What are the three essential parts of a formal data model?

 1- Conceptual schemes
 2- Logical schemes
 3- Physical schemes
4- Any formal (logical) data model must include the following three parts:

Structure: The definition of the way that data are logically structured within the model, for example, in the Relational Model the structure is defined by the combination of relations, domains, attributes (tuples are really a side effect of the relational structure rather than part of the structure itself). Compare this with the ODMG 3.0 object model, in which structure is defined by the combination of objects and properties.

Integrity: A set of rules that ensure the integrity of data represented using the data model. For example, the relational model defines the entity and referential integrity rules. The ODMG object model does not appear to define any intrinsic integrity rules.

Operators: A means of manipulating data represented using the data model. For example, the relational model defines the relational algebra and calculus for manipulating relationally structured data. The ODMG object model uses object methods for data manipulation.

Reference: Codd, E.F. (1981) “Data models in database management,” ACM SIGMOD Record, 11(2).

What is the origin of the term “relational” in “relational model”?

The origin terms o relation in relation data model is the relational model includes concepts such as foreign keys, which are primary keys in one relation that are kept in another relation to allow for the joining of data

5- It derives directly from the mathematical concept of a relation. Given a collection of sets S1, S2, …, Sn, a relation R on these sets comprises a collection of tuples, each with n elements, where the first element of the tuple comes from S1, the second element from S2, and so on. More concisely, R is a subset of the Cartesian product S1×S2×…×Sn. Each of the sets Si corresponds to a relational domain.

A relation can also be thought of as a mapping or function from one set of values to another (hence the concept of functional dependencies, introduced in SFDV2003).

Reference: Codd, E.F. (1970) “A relational model of data for large shared data banks,” Communications of the ACM, 13(6).

Traditionally, data were stored as files of records, where each record was made up of a collection of fields. These terms are still used, but they relate strictly to the physical level of data representation, and are therefore inappropriate for systems that operate at the logical level. Identify the analogous terms that are used in SQL and in the formal terminology of the relational model.

· Tables & views
· Stored functions & procedures
· Packages
· Triggers
· Indexes & some other physical structures
· Object tables, types & views
6- SQL: Table, row, column.

Relational model: Relation, tuple, attribute.

Physical level: File, record, field.

For each of the terms file, record and field, identify the difference(s) between the physical concept and its relational counterpart.

 Physical concept---------> specified using field of database refers to the syntax that describes the structure of files and indices.
 Relational counterpart------------> multi- relational

7- Define the terms degree and cardinality as they apply to relations.

Degree-------> The degree of a relationship is the numeral of entities associated with the relationship.

Cardinality--------> mean how many instances of one entity are associated with how many instances of other entity in a relationship.

8- Explain the difference between a relation variable and a relation value.

A relation value is an instance of a relation.

 A relation variable is a variable which has a relation value

9-A relation value (or just relation)is a particular instance of a relation, e.g., a customer relation containing ten (or twenty, or zero) customer tuples, or a part relation containing 300 tuples. A relation value is static in the same way that an integer value is, that is, the value 3 is not the same as the value 5 (and more important, you cannot change the value 3 into the value 5).

A relation variable (also known as a relvar) is a named object (in the generic sense) that can contain a relation value. This relation value may change over time. This is analogous to variables in a programming language: an integer variable may hold different integer values at different times.

Date has recently introduced the notion of a relation type, which is analogous to the programming concept of a data type. That is, you define a specific relation type (e.g., Customer), then declare a relation variable of that type, which can contain relation values of that type.

Why are domains important in the relational model? How do they differ from data types?

· attribute domain(String)

· data atomicity
· decomposable

We differ them if it is string, integer, or character.

10- In Codd’s original definition of the relational model, domains represent different semantic concepts. For example, a customer ID is logically distinct from an employee ID, event though they might have the same data type and appearance. Thus, domains are a means of applying meaning to data.

An important consequence of the concept of domains is that values from different domains can only be combined in ways that make sense, based on their inherent meaning. For example, consider the domains of quantity and price. Physically, these are both just numbers, but logically speaking, it does not make sense to add a quantity to a price (e.g., 15 widgets + $12.50). It does, however, make sense to multiply a price by a quantity (i.e., 15 widgets × $12.50). In other words, operators may behave differently depending on the domains involved.

Do you think the relational model was originally conceived as a logical or a conceptual model?

No, I think the relational model is not as logical or a conceptual model because:

 Relational model is -------->built around a simple and natural mathematical structure and have a set of powerful, high level operator and data manipulation language.

 Logical model is ----------> may not support some conceptual constructs.
 Conceptual model is----------> describing using paper by our hands.
4 Activities

A predicate or Boolean expression is an expression that evaluates to either TRUE or FALSE. Predicates or predicate expressions are also known as conditional expressions, truth-valued expressions, or logical expressions. Predicate expressions crop up everywhere in computing, so it’s essential to have a good understanding of how they work, particularly with SQL, which is based on logic theory and set theory
.

In this section, “TRUE” and “T” stand for a true value, and “FALSE” and “F” stand for a false value.
Provided below are truth tables describing the behavior of the fundamental Boolean operators: AND, OR and NOT:
	AND

	T

	F

	T

	T

	F

	F

	F

	F

	
	OR

T

F

T

T

T

F

T

F

	T

F

NOT

F

T

Your tasks for today are to evaluate (i.e., work out the value of) the following predicate expressions. As there are no nulls (unknown values) in the first batch of questions, your answers should either be TRUE or FALSE.

Some basic expressions to begin with—evaluate the following:

· FALSE OR TRUE------------------> FALSE
· ⇒ TRUE

· FALSE AND TRUE----------------> TRUE
· ⇒ FALSE

· TRUE OR TRUE-------------------> TRUE
· ⇒ TRUE

· FALSE OR FALSE----------------> FALSE
· ⇒ FALSE

· FALSE AND FALSE--------------> FALSE
⇒ FALSE

Evaluate the truth-valued parts of these expressions, given the following facts:

	Fred is 65 years of age.
Fred earns $40 000 annually.
Fred is single.

Fred is > 40 AND Fred earns > 30000------------> TRUE
⇒ TRUE AND TRUE
⇒ TRUE

if Fred is married OR Fred earns > 30000-------> FALSE
⇒ FALSE OR TRUE
⇒ TRUE

if Fred is married AND Fred earns > 30000------> TRUE
⇒ FALSE AND TRUE
⇒ FALSE

SELECT * FROM Employee E ---------------------> TRUE
WHERE E.Age < 40 AND E.Status = 'single';

⇒ FALSE AND TRUE
⇒ FALSE

SELECT * FROM Employee E-----------------------> FALSE
WHERE E.Age > 40 OR E.Status = 'married';

⇒ TRUE OR FALSE
⇒ TRUE

CHECK (Age = 65 AND Salary > 45000) ---------> TRUE
⇒ TRUE AND FALSE
⇒ FALSE

CHECK (Age = 65 AND Salary > 35000) ------> TRUE
⇒ TRUE AND TRUE
⇒ TRUE

CHECK (Age = 60 OR Salary > 45000) --------> FALSE
⇒ FALSE OR FALSE
⇒ FALSE

CHECK (Age = 65 OR Salary > 45000) --------> FALSE
⇒ TRUE OR FALSE
⇒ TRUE

CHECK (Age = 60 OR Salary < 45000) ---------> FALSE
⇒ FALSE OR TRUE
⇒ TRUE

We can of course build more complex predicate expressions that involve many predicates and operators, such as P1 AND P2 OR P3 AND P4. In situations like this, an order of precedence is required to ensure the correct answer, just like BEDMAS (Brackets, Exponents, Division, Multiplication, Addition, and Subtraction) in arithmetic. The order of precedence for Boolean operators is shown below:

	() = NOT = AND = OR

Evaluate the following:

T AND F AND T-----------> TRUE (T∩F) ∩T=T∩T=T
⇒ F AND T
⇒ F
T OR F AND T-------------> TRUE (T ∪ F) ∩ T= TRUE
⇒ T OR F
⇒ T
T AND T AND NOT (T) -----------> (T ∩ T) ┐T= TRUE
⇒ T AND T AND F
⇒ T AND F
⇒ F
T AND T AND F---------------> (T∩T) ∩F= T∩F=TRUE
⇒ T AND F
⇒ F
T AND F OR T-----------------> (T∩F) ∪ T= T ∪ F= FALES
⇒ F OR T
⇒ T

NOT (T AND (F OR T)) -------------> ┐ (T∩ (F ∪ T)) = ┐ (T∩F) = ┐ (T) = FALSE
⇒ NOT (T AND T)
⇒ NOT T
⇒ F
T AND (F OR T) -----------> (T∩ (F ∪ T) = (T∩F) = TRUE
⇒ T AND T
⇒ T

(T AND (F OR T)) OR T----------> (T∩ (F ∪ T)) ∪ T= (T ∩ F) ∪ T=T ∪ T= TRUE
⇒ (T AND T) OR T
⇒ T OR T
⇒ T

Evaluate the truth-valued parts of these expressions, given the following facts:

	Matilda is 35.
Matilda earns $50 000 annually.
Matilda is married.

IF Age > 25 AND Salary = 50000 OR
 Status = 'single'------------> (T ∩ T) ∪ F= T ∪ F= FALSE
⇒ T AND T OR F
⇒ T OR F
⇒ T

IF Age < 25 OR Salary = 50000 AND
 Status = 'married'----------> (F ∪ T) ∩ T= F∩T=TRUE
⇒ F OR T AND T
⇒ F OR T
⇒ T

IF Age > 25 AND (Salary = 50000 OR
 Status = 'single') ------> (T∩T) ∪ F= T ∪ F= FALSE
⇒ T AND (T OR F)
⇒ T AND T
⇒ T

IF (Age > 25 AND Salary = 50000) AND
 (Age < 20 OR Status = 'married') ---------> (T∩T) ∩ (F ∪ T) = T∩F= TRUE
⇒ (T AND T) AND (F OR T)
⇒ T AND T
⇒ T

IF Age > 25 AND Salary = 50000 AND
 Age > 20 OR Status = 'married' ------> (T ∩ T) ∩ (T ∪T) = T ∩ T= TRUE
⇒ T AND T AND T OR T
⇒ T AND T OR T
⇒ T OR T
⇒ T

SELECT * FROM Employee E
WHERE E.Age >= 35 AND Salary > 40000 OR
 E.Status = 'single' ----------> (T ∩ T) F= T ∪ F= FALSE
⇒ T AND T OR F
⇒ T OR F
⇒ T

CHECK (Age > 35 AND (Salary > 40000 OR
 Status = 'married')) ----------> (F∩ (T ∪T)) = F ∩ T= TRUE
⇒ F AND (T OR T)
⇒ F AND T
⇒ F

CHECK (Age > 35 AND Salary > 40000 OR
 Status = 'married') -------> (F ∩ T) ∪ T= T ∪ T= TRUE
⇒ F AND T OR T
⇒ F OR T
⇒ T

NOT (NOT (Age = 35) AND--------> ┐ (┐T) ∩ (┐ (F ∪ F) = ┐ (F ∩T) = ┐ (T) = FALSE
(NOT (Salary < 40000 OR Status = 'single')))
⇒ NOT (NOT T AND (NOT (F OR F)))
⇒ NOT (F AND (NOT F))
⇒ NOT (F AND T)
⇒ NOT F
⇒ T

Draw truth tables for the AND, OR and NOT operators when the possibility of nulls (unknown values) is included.

	A
	B
	┐A
	┐B
	A ∩ B
	A ∪ B

	T
	T
	F
	F
	T
	T

	T
	F
	F
	T
	T
	F

	F
	T
	T
	F
	T
	F

	F
	F
	T
	T
	F
	F

		AND

	T

	F

	N

	T

	T

	F

	N

	F

	F

	F

	F

	N

	N

	F

	N

	
	OR

T

F

N

T

T

T

T

F

T

F

N

N

T

N

N

	T

F

N

NOT

F

T

N

Evaluate the expressions below, given the following facts:

	Alice is 35.
Alice’s salary is unknown (null).
Alice’s marital status is unknown.

Age >= 35 AND Age <= 45----------> T ∩ T= TRUE
⇒ T AND T
⇒ T

Age BETWEEN 35 AND 40------------> T ∩ F= FALSE
⇒ T

(BETWEEN is inclusive of the upper and lower bounds.)

Age >= 45 AND Age <= 25-------> T ∩ T= TRUE
⇒ F AND F
⇒ F

Age = 35 AND Salary BETWEEN 30000 AND 40000------->TRUE
⇒ T AND NULL
⇒ NULL

Salary > 0--------------> FALSE
⇒ NULL

Even though logically no-one’s salary could be less than 0, the system can only say with certainly that the expression is null.

Salary > 50000 AND Salary < 25000------------> F ∩ F= FALSE
⇒ NULL

Even though it is impossible for anyone’s salary to satisfy these criteria, the system will still respond null.

Status = 'single'------------> FALSE
⇒ NULL

Status = 'married'-------------> FALSE
⇒ NULL

Status = 'single' OR Status = 'married'--------------> F ∪ F= FALSE
⇒ NULL OR NULL
⇒ NULL

Again, even if single and married are the only options, since the status is not explicitly stated in the database either way, the system would respond null.

Status IS NULL------------> TRUE
⇒ T

IS NULL is a special operator for checking for nulls. It returns TRUE or FALSE (could it return NULL?).

Status = NULL-----------> TRUE
⇒ NULL

The = operator would return null in this case, since the marital status is unknown. Technically speaking, this expression is incorrect, as you cannot meaningfully compare something to null anyway. Many DBMSs (including Oracle) accept it anyway, but different products almost certainly interpret the expression in different ways.

Status IS NOT NULL-------------> TRUE
⇒ NOT T
⇒ F

⇒ T/F

While not technically correct, many database systems (including Oracle) treat an empty string the same as NULL, in which case this expression would evaluate to TRUE. PostgreSQL (an open source DBMS) is one of the few DBMSs that correctly distinguish between NULL and '', and thus returns FALSE in this case.

