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SFDV3002 Tutorial 3: 
Relational Algebra

3 Questions

1. What properties must a pair of relations have in order to have set operators such as union (∪) applied?
· In order for the union to be meaningful all items in the corresponding columns must belong to the same domain.
· Both relations have the same number of columns.

· The name of the attributes is the same in both relations.

· Attributes with the same name in both relations have the same domain.

Two conditions are required:

a) The relations must have the same number of attributes (same degree or “arity”); 

b) The domain of each corresponding attribute (attribute 1 of relation A and attribute 1 of relation B, …) must be the same in both relations. 

In other words, the relations must be of the same type. Relations that meet both these conditions are said to be union-compatible. 

In typical relational database implementations, which do not implement domains, the first requirement still holds, but the second requirement applies to data types rather than domains. This means that it is possible to union two tables that are semantically incompatible. For example, consider the following two relations: 

	Employee_ID
	Name

	12345
	Jane Smith


	
	Customer_ID
Address
76776
45 George Street



Because both relations have the same number of columns with the same data types (numeric and character, respectively), Oracle will be able to union these tables. Semantically however, the tables are not union-compatible, as the domains of the columns are different in both tables: a customer ID is not the same domain as an employee ID (although it is very similar), but more important, an address is definitely not the same domain as a person’s name. 

(Note that all of the above also applies to “intersect” and “difference” set operators.) 

2. Ccompare the project (π) and restrict (σ) relational operators. Provide an example of each using a simple relation.
1- Project (π) --------> Retrieve a subset of a table’s columns and retrieves all columns. For example, if R is a relation name and A1, A2 ,…..,An are some of the attributes in R then  π  A1, A2 ,…..,An (R) 
2-  Restrict (σ) -------> Retrieve rows that meet certain criteria. For example, SELECT *
                                        FROM Employee

               
WHERE Salary = 45000;     salary=45000(Employee).

The project (π) operator selects a subset of attributes (columns) from the argument relation. Essentially, a vertical subset of the argument relation. 

Example: πFirstnames, Gender (Employee) 

The restrict (σ) operator selects tuples (rows) that satisfy a given predicate. Essentially, a horizontal subset of the argument relation. 

Example: σFirstnames='Bo Bo' (Employee) 

Note that both are examples of unary operators (operators that take a single operand). 

3. Describe the behavior of the natural join (⋈) operator. Use an example to illustrate.
            Behavior of the natural join (⋈) operator is a join condition equates all identically named attributes in the two relations being joined 
 For example, the natural join of R and S denoted as R⋈ S
                                                         So, πattr-list (ợ join-cond(R * S)
The natural join (⋈) (or simply join) operator combines tuples of one relation with another relation, as with the product, but only where there is equality between values of the attributes common to both relations. These common attributes are determined by their names, not by the presence of a foreign key (although in practice, most joins are based on a foreign key). It is possible to base a join on columns that are not involved in a foreign key-primary key association, for example, find events from two tables that happened on the same day. 

4. Describe the behavior of the Cartesian product (×) operator. Can you give an example of a situation in which it might be used?
             Cartesian product (×) --------> also called cross product R * S and it is a concatenation of a tuple. For example, PID, Name (Student) and PID, DepId (Teacher). To make it clear witch part of each tuple in the product comes from which relation.
The Cartesian product (×) combines all tuples of one relation with all tuples of another. The resulting relation contains every possible pairing of tuples from the two relations. The Cartesian product operation is also called the “cross product” or simply “product”. Because the product includes every combination of tuples, even those that are not related to one another, the operation is of no real practical use by itself. However, it can be used in conjunction with a restriction operation to yield the join of two relations, by restricting the result of the product to only those rows that have the same value for the attribute(s) that are shared by the relations. (Note that, although this is a useful way to understand what a join does, it is not a very efficient way to carry one out, because the product produces a (potentially very) large intermediate relation). 

5. What is the relationship between the join and product operations?

            The relation between them is Combine every row of one table with every row of another 
Product can be thought of as a precursor to join. Product returns all pairs of tuples from the relations, regardless of whether they are related. If the result of the product is then restricted so that only related tuples are retained, the result is the same as a join result. 

The join of two relations is a subset of the product of the same relations.

Unlike the Cartesian product, the join has considerable practical use and is necessary to counteract the “fragmenting” effect of normalising the database. 

6. What is the relationship between the (inner) join operator and the process of normalization?

           The relation between them is process of normalization is Normalise candidate relations to at least 3NF (3NF = third normal form) 
Normalisation is basically the process of splitting relations in a database model in order to reduce redundancy. The relationships between the relations are retained through the use of foreign keys. To reconnect the data that have been separated, the join operation can be applied. That is, joining can be thought of as the inverse of normalisation (loosely speaking). Joins are by far the most common type of multi-table operation in practice. 

7. The mathematical property of closure means that operators within a system will produce output of the same type as the input. For example, in arithmetic (a closed system), adding two numbers will always return another number. Why would it be important that the relational model be a closed system?
            The reason is that, use to build a round the simple and natural mathematical structure to the relation or table so, the relation have a set of:
1- powerful

2- high level operators
3- data manipulation language

All of them are deeply rooted in mathematical logic

Closure means that the system can re-use the output of an operator as the input of another; all operators are universally compatible. This means that you can write arbitrarily complex expressions (e.g., you can nest one expression within another). 

4 Activities

1. Suppose a database contains four relations having the following characteristics: 

Relation A: has degree 4 and cardinality 10. 

Relation B: has degree 10 and cardinality 100. 

Relation C: has degree 4 and cardinality 50. 

Relation D: has degree 4 and cardinality 0. 

What would be the degree and cardinality of the result of the following relational algebra operations? 

a) A × B-----> the degree = 40, cardinality = 1000
The × operator connects the tuples “horizontally”, so the resulting relation will have all the attributes of relation A and all the attributes of relation B. In general, therefore, the degree of the result is the sum of the degrees of the operands, in this case, 4 + 10 = 14. 

Because the product includes all combinations of tuples from the two relations, the cardinality will be the product of the operands’ cardinalities, 10 × 100 =1 000. 

b) A × C------->degree= A × C= 16, cardinality= A × C= 500
c) A × B × C ---------> degree = 160 , cardinality = 50000
d) C × D------------> degree = 16 , cardinality = 0
The degree is 4 + 4 = 8; the cardinality is 50 × 0 = 0. 

e) A ∪ C -------------> degree = 8 , cardinality = 60
The relational set operations connect attributes “vertically”, so the degree of the result of a union, intersection or difference is the same as the degrees of the operands. In order to apply one of these operations, the operand relations must have the same degree, and the domains of their attributes must be compatible. Such relations are said to be union-compatible. 

In this case, both relations have a degree of 4, so the result is also of degree 4. The cardinality, however, cannot be calculated exactly, because it will depend on the values in the relations: the more “overlap” or tuples in common, the smaller the result will be. However, we can be certain that it will be at least 50 (all tuples in A also occur in C) and at most 60 (no values in common). 

f) B ∪ C--------> degree = 14 , cardinality = 150
Relations B and C have different degrees, so they are not union-compatible. It is not possible to take the union or intersection of these two relations. 

g) A ∩ C---------> degree = 4, cardinality = 0
Again, the resulting relation will have the same degree as the operands: 4. The cardinality will again depend on the values in the relations, but we can be certain that there will be at most 10 tuples in common (resulting cardinality 10), and at the very least, there might be no tuples in common, in which case the cardinality of the result would be 0. 

h) A ∪ A----------> degree = 4 cardinality = 10
Since the union operator eliminates duplicate values, the result of A ∪ A will simply be A, so the degree will be 4 and the cardinality 10. 

i) A ∩ A---------->degree = 4 , cardinality = 0
j) C ∩ D-------> degree = 4 , cardinality = 0
Since D has no rows, there can be no rows in common between the two relations. The result will be a degree 4 cardinality 0 relation. 

k) C − A---------> degree = 0 , cardinality = 40
At one extreme, all tuples in A are also in C, giving a cardinality of 50 − 10 = 40. At the other extreme, there are no tuples that appear in both A and C, in which case the cardinality of the result would be 50. The range of possible cardinalities is 40–50. 

l) A ⋈ B---------> degree= 14, cardinality = 110
Like the Cartesian product, the join operator connects pair of rows “horizontally”. Unlike product, however, the join (assuming an inner equi-join) will only include the attributes that define the join condition once, even though they must appear in both relations. So, the degree will vary depending on the join key (specifically, how many attributes are being compared), and the cardinality of the result will vary depending on the data in the relations (i.e. how many matching pairs of rows there are). 

In this case, order to join the two relations, there must be at least one column in common, and there can be at most 4 columns in common, so the degree could be anywhere between 10 and 13. The cardinality would be between 0 (no matching pairs of rows) and 100 (all rows in B have a related row in A). 

m) C ⋈ D-------------> degree = 8, cardinality = 50
The degree of this could be anywhere between 4 (all columns shared) and 7 (only one column shared). The cardinality would be 0, as D has no rows at all to join. 

