SQU Department of Mathematics & Statistics MATH 2108: Calculus II Fall 2010 Homework Assignment

To submit no later than Saturday, 4 December, 2010

- This assignment carries a 5% weight of the total course weight
- Present a clear, detailed and thought out work
- Your work <u>must</u> be independently executed
- All cases of plagiarism, if detected, will be dealt with as per university exam regulation
- An entire question or a part of it may be assessed by a quiz during the class
- Show all necessary work to receive full credit. Simplify your answer as far as possible.
- 1. Let *R* be the triangle enclosed by three lines $y = \frac{1}{2}x 1$, $y = -\frac{1}{2}x + 1$ and x = 4.
 - (*a*) Sketch the region *R* and find the area of *R*.
 - (b) Find the volume V obtained by rotating R about the y-axis.
- 2. (a) Find the area between $y = x^2$ and y = mx for any constant m > 0.
 - (b) Using the area found in (a), and without doing any further calculations, find the area between $y = \sqrt{x}$ and y = mx.
- 3. The base of a solid V is the region bounded by x + y = 2, $y = \ln(x-1)$ and y = 2. Find the volume of this solid if V has the following cross sections perpendicular to the y-axis: (a) square cross sections
 - (b) semicircular cross sections
 - (c) equilateral triangle cross sections.
- 4. Evaluate the following: [Use a table of integration if needed]

(a)
$$\int \frac{4-2x^2}{x^3+3x^2+2x} dx$$
; (b) $\int x^{-4} \sin(1/x) \cos(1/x) dx$;
(c) $\int \frac{\ln x \sqrt{\ln^4 x - 9}}{5x} dx$; (d) $\int_{-1}^{1} \frac{2}{13-4|x|+x^2} dx$.

5. Use a comparison to determine whether the integral converges or diverges:

(a)
$$\int_{3}^{\infty} \frac{1}{x - e^{-x}} dx$$
 (b) $\int_{3}^{\infty} \frac{1}{x + e^{x}} dx$ (c) $\int_{2}^{\infty} \frac{\ln x}{e^{x} + 1} dx$ (d) $\int_{1}^{\infty} e^{-x^{3}} dx$

6. Determine whether TRUE or FALSE and justify your answer: (*where appropriate give a counter example*)

(a) If
$$\lim_{x \to \infty} f(x) = 0$$
 then $\int_0^{\infty} f(x) dx$ converges.
(b) For all integers $M \ge 2$, $\left| \sum_{k=1}^{\infty} (-1)^k \frac{1}{\sqrt{k}} - \sum_{k=1}^{M-1} (-1)^k \frac{1}{\sqrt{k}} \right| \le \frac{1}{\sqrt{M}}$.
(c) If a_n is the area enclosed by $y = x^{2n}$ and $y = x^{1/2n}$ for $n \ge 1$, $x \in [0, 1]$, then $\lim_{n \to \infty} a_n = 1$
(d) If $\sum_{k=1}^{\infty} a_k$ diverges then $\lim_{k \to \infty} a_k \ne 0$.

- 7. Let $a_n = \frac{1}{n^3} + \frac{4}{n^3} + \frac{9}{n^3} + \dots + \frac{n^2}{n^3}$.
 - (*a*) Find a closed form for a_n .
 - (b) Show that the sequence a_n converges.
- 8. Determine whether the series converges or diverges:

(a)
$$\sum_{k=1}^{\infty} \tan\left(e^{-k}\right)$$
 (b) $\sum_{k=1}^{\infty} \frac{2k+1}{k^2(k+1)^2}$ (c) $\sum_{k=3}^{\infty} \frac{k^{-1}}{\ln k + 1}$
(d) $\sum_{k=1}^{\infty} \frac{1}{k\sqrt{1+3k}}$ (e) $\sum_{k=1}^{\infty} \frac{1}{|\sin k| + k\sqrt{k}}$ (f) $\sum_{k=3}^{\infty} \frac{\cos k\pi}{k + \ln k}$

To submit no later than Saturday 4 December, 2010