PHYS 2101 Exam 1 Monday, October 13 5:30-7:00 pm Name: ID: Section (or instructo	FOR MULTIPLE CHOICE ARE FOR EXAM 1B. IF YOUR EXAM IS IA THEN THE ANSWERS ARE THE SAME BUT THE CHOICES ARE DIFFERENT
WRITE ALL ANS	SWER TO MULTIPLE CHOICE QUESTIONS IN THE TABLE BELOW.
Answers to Multiple	Choice questions (each question is 3.5 points)
MC1	
MC2	
MC3	
MC4	
MC5	
MC6	
MC7	
MC total	Useful constant: $g = 9.8 \text{ m/s}^2$
P1	
P2	<u>/15</u>
P3	/20.5
P4	<u>/20</u>
P5	<u>/10</u>
Tot	/100

Each multiple choice (MC) question is 3.5%. There are 7 questions: MC1 to MC7.

(MC1) Consider the equation $y = y_0 + v_0 t + \frac{1}{2}at^2$. Which of the following statements is correct?

- (a) is the final position at time t, y_0 is the initial position, and $y y_0$ is the displacement from the initial position.
- (b) y is the final distance from the origin at time t, y_0 is the initial distance from the origin and $y y_0$ is the displacement from origin.
- (c) y is the final distance from the origin at time t, y_0 is the origin, and $y y_0$ is the displacement from the origin.
- (d) y is the final position at time t, y_0 is the initial position, and $y y_0$ is the distance from the origin.

(MC2) Vectors v_1 and v_2 are shown below.

Which of the following choices below gives $v = -v_1 - v_2$?

The graph below shows the position x against time t graph for a Mazda 6 car. Use this graph to answer questions MC3, MC4 and MC5.

(MC3) In which intervals is the Mazda's velocity constant?

- (a) Between A and B, D and E.
- (b) Between B and D, E and G.
- (c) Between A and C, C and F.

(d) Between D and E, F and G. in both slope = const = v = const

(MC4) In which interval is the Mazda moving in the negative direction?

- (a) Between A and C.
- (b) Between B and D.

(d) Between C and F. - it goes from larger x to smaller x (d) Between F and G. .. negative direction

(MC5) In which of the following intervals is the Mazda accelerating (speed is increasing)?

(a) Between A and B, D and E.

(a) Between A and B, C and D. → Slope is increasing between A and B
(b) Between A and B, C and D. → Slope is increasing between A and B
(c) Between D and E, E and F.
(d) Between B and C, F and G.

Slope = 0 ⇒ V=0 at C, if

accelerates when it moves to D

is between (Cand D

car is accelerating, is speed increases

(MC6) Below is a graph of acceleration a against time t for a bird. In the graph, A is a positive number.

Which of the following graphs is a possible v against t graph for the bird, where v is velocity?

negative (b) positive slope

(d)

(MC7) You drop a dead fish from a satellite in space and it accelerates towards Earth. When the fish hits Earth's atmosphere, the atmosphere's resistance slows the fish down until it reaches height H above ground. After that, it falls to ground from height H with constant speed. What is the direction of the fish's acceleration when it leaves the satellite (a_{space}) , when it is slowing down $(a_{\text{atmosphere}})$, and when it falls with constant speed (a_{ground}) ?

- (a) a_{space} is down, $a_{\text{atmosphere}}$ is down and a_{ground} is zero.
- (b) a_{space} is down, $a_{\text{atmosphere}}$ is up and a_{ground} is zero.
- (c) a_{space} is down, $a_{\text{atmosphere}}$ is down and a_{ground} is down.
- (d) a_{space} is up, a_{atmosphere} is down and a_{ground} is down.

There are 5 problems: P1 to P5.

(P1) One year has 365 days. Find one second to units of years. Give your answer in 2 significant figures. (10 points)

$$1S = 15 \times \frac{1 \text{min}}{60 \text{s}} \times \frac{1 \text{hr}}{60 \text{min}} \times \frac{1 \text{day}}{24 \text{hrs}} \times \frac{1 \text{yr}}{365 \text{days}}$$

$$= 3.17 \times 10^{-18} \text{yrs} = 3.2 \times 10 \text{yrs}$$

(P2) You are a policeman. You see a car accelerating uniformly from rest for a distance of 50.0m in 5 seconds. The speed limit in the road is 27.8m/s. Is the speed of the car above the speed limit after these 5s? Show your work. (15 points)

The car is accelerating uniformly, so
$$\chi = \chi_0 + v_0 t + \frac{1}{2} a t^2$$

$$= 0 + 0 + \frac{1}{2} a t^2 \quad (where origin is chosen at initial position)$$

$$\Rightarrow 50 = \frac{1}{2} a(5)^2$$

$$\Rightarrow 100 = 25a \Rightarrow a = 4 \frac{4m}{s^2}$$

$$\Rightarrow V = v_0 + at = 0 + (4)(5) = \frac{20m}{s}$$

$$\Rightarrow less than the speed limit.$$

(P3) The figure below shows a ball thrown from a height 2.0m above ground at $\theta = 30^{\circ}$

(P4) You are initially moving towards Muscat (positive direction) at 8.0m/s. You then accelerate uniformly at 2.0m/s² in the negative direction. (20 points, 5 per part)

(a) What is the magnitude of your velocity 6.0s after you started accelerating?

(b) Calculate the magnitude and direction of your displacement after these 6.0s.

Since
$$x-x_3=12-0=12m$$
 is positive, indirection is positive.

When the inaginitude and direction of your displacement after these 6.0s.

 $x=x_3+26t+\frac{1}{2}\alpha t^2=0+8(6)+\frac{1}{2}(-2)(6)^2=48-36=12m$

Since $x-x_3=12-0=12m$ is positive, indirection is positive.

(c) Draw IN THE FIGURE BELOW the following vectors: your initial velocity, your velocity after 6.0s, your displacement after 6.0s, and your acceleration.

(d) Calculate the total distance you traveled in these 6.0s.

- (P5) You go East at 8.0m/s and then turn North and continue at 8.0m/s. The change of direction from East to North takes 2.0s. (10 points, 5 per part)
- (a) Calculate the magnitude and direction of your average acceleration.
- (b) Draw a diagram showing the directions of your initial velocity, final velocity and average acceleration.

(a)
$$\vec{a}$$
 is a vector; $\vec{a} = \frac{\Delta \vec{v}}{\Delta t} = \frac{\vec{v}_z - \vec{v}_i}{\Delta t}$ \rightarrow vector substraction $\vec{v}_z - \vec{v}_i = \vec{v}_z - \vec{v}_i = \vec{v}_z + \vec{v}_z$

$$= \frac{\vec{v}_z}{\vec{v}_z} + \frac{\vec{v}_z}{\vec{v}_z}$$

$$= \frac{\vec{v}_z}{\vec{v}_z} + \frac{\vec{v}_z}{\vec{v}_z} + \frac{\vec{v}_z}{\vec{v}_z} + \frac{\vec{v}_z}{\vec{v}_z}$$

$$= \frac{\vec{v}_z}{\vec{v}_z} + \frac{\vec{v}_z$$